创建一个固定大小的线程池。
shutdown():用于关闭启动线程,如果不调用该语句,jvm不会关闭。
awaitTermination():用于等待子线程结束,再继续执行下面的代码。该例中我设置一直等着子线程结束。
public class Test {
public static void main(String[] args) throws IOException, InterruptedException {
ExecutorService service = Executors.newFixedThreadPool(2);
for (int i = 0; i < 4; i++) {
Runnable run = new Runnable() {
@Override
public void run() {
System.out.println("thread start");
}
};
service.execute(run);
}
service.shutdown();
service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
System.out.println("all thread complete");
}
}
输出:
thread start
thread start
thread start
thread start
all thread complete
newScheduledThreadPool
这个先不说,我喜欢用spring quartz.
CyclicBarrier
假设有只有的一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待.
- import java.io.IOException;
- import java.util.Random;
- import java.util.concurrent.BrokenBarrierException;
- import java.util.concurrent.CyclicBarrier;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
-
- class Runner implements Runnable {
-
- private CyclicBarrier barrier;
-
- private String name;
-
- public Runner(CyclicBarrier barrier, String name) {
- super();
- this.barrier = barrier;
- this.name = name;
- }
-
- @Override
- public void run() {
- try {
- Thread.sleep(1000 * (new Random()).nextInt(8));
- System.out.println(name + " 准备OK.");
- barrier.await();
- } catch (InterruptedException e) {
- e.printStackTrace();
- } catch (BrokenBarrierException e) {
- e.printStackTrace();
- }
- System.out.println(name + " Go!!");
- }
- }
-
- public class Race {
-
- public static void main(String[] args) throws IOException, InterruptedException {
- CyclicBarrier barrier = new CyclicBarrier(3);
-
- ExecutorService executor = Executors.newFixedThreadPool(3);
- executor.submit(new Thread(new Runner(barrier, "zhangsan")));
- executor.submit(new Thread(new Runner(barrier, "lisi")));
- executor.submit(new Thread(new Runner(barrier, "wangwu")));
-
- executor.shutdown();
- }
-
- }
输出:
wangwu 准备OK.
zhangsan 准备OK.
lisi 准备OK.
lisi Go!!
zhangsan Go!!
wangwu Go!!
ThreadPoolExecutor
newFixedThreadPool生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)
corePoolSize:池中所保存的线程数,包括空闲线程(非最大同时干活的线程数)。如果池中线程数多于 corePoolSize,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。
maximumPoolSize:线程池中最大线程数
keepAliveTime:线程空闲回收的时间
unit:keepAliveTime的单位
workQueue:保存任务的队列,可以如下选择:
- 无界队列: new LinkedBlockingQueue<Runnable>();
- 有界队列: new ArrayBlockingQueue<Runnable>(8);你不想让客户端无限的请求吃光你的CPU和内存吧,那就用有界队列
handler:
当提交任务数大于队列size会抛出RejectedExecutionException,可选的值为:
- ThreadPoolExecutor.CallerRunsPolicy 等待队列空闲
- ThreadPoolExecutor.DiscardPolicy:丢弃要插入队列的任务
- ThreadPoolExecutor.DiscardOldestPolicy:删除队头的任务
关于corePoolSize和maximumPoolSize:
Java官方Docs写道:
当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求(即使存在空闲线程)。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列(queue)满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。
- public class Test {
-
- public static void main(String[] args) {
- BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();
- ThreadPoolExecutor executor = new ThreadPoolExecutor(3, 6, 1, TimeUnit.DAYS, queue);
-
- for (int i = 0; i < 20; i++) {
- final int index = i;
- executor.execute(new Runnable() {
- public void run() {
- try {
- Thread.sleep(4000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println(String.format("thread %d finished", index));
- }
- });
- }
- executor.shutdown();
- }
- }
原子变量(Atomic )
并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。
下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由于阻塞队列的put和take操作会阻塞,为了使线程退出,在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。
- import java.io.File;
- import java.io.FileFilter;
- import java.util.concurrent.BlockingQueue;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.LinkedBlockingQueue;
- import java.util.concurrent.atomic.AtomicInteger;
-
- public class Test {
-
- static long randomTime() {
- return (long) (Math.random() * 1000);
- }
-
- public static void main(String[] args) {
- // 能容纳100个文件
- final BlockingQueue<File> queue = new LinkedBlockingQueue<File>(100);
- // 线程池
- final ExecutorService exec = Executors.newFixedThreadPool(5);
- final File root = new File("D:\\dist\\blank");
- // 完成标志
- final File exitFile = new File("");
- // 读个数
- final AtomicInteger rc = new AtomicInteger();
- // 写个数
- final AtomicInteger wc = new AtomicInteger();
- // 读线程
- Runnable read = new Runnable() {
- public void run() {
- scanFile(root);
- scanFile(exitFile);
- }
-
- public void scanFile(File file) {
- if (file.isDirectory()) {
- File[] files = file.listFiles(new FileFilter() {
- public boolean accept(File pathname) {
- return pathname.isDirectory() || pathname.getPath().endsWith(".log");
- }
- });
- for (File one : files)
- scanFile(one);
- } else {
- try {
- int index = rc.incrementAndGet();
- System.out.println("Read0: " + index + " " + file.getPath());
- queue.put(file);
- } catch (InterruptedException e) {
- }
- }
- }
- };
- exec.submit(read);
- // 四个写线程
- for (int index = 0; index < 4; index++) {
- // write thread
- final int num = index;
- Runnable write = new Runnable() {
- String threadName = "Write" + num;
-
- public void run() {
- while (true) {
- try {
- Thread.sleep(randomTime());
- int index = wc.incrementAndGet();
- File file = queue.take();
- // 队列已经无对象
- if (file == exitFile) {
- // 再次添加"标志",以让其他线程正常退出
- queue.put(exitFile);
- break;
- }
- System.out.println(threadName + ": " + index + " " + file.getPath());
- } catch (InterruptedException e) {
- }
- }
- }
-
- };
- exec.submit(write);
- }
- exec.shutdown();
- }
-
- }
CountDownLatch
从名字可以看出,CountDownLatch是一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程都完成后也会触发事件,以便进行后面的操作。
CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。
一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被打开就不能再关闭使用了,如果想重复使用,请考虑使用CyclicBarrier。
下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。
- import java.util.concurrent.CountDownLatch;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
-
- public class Test {
-
- public static void main(String[] args) throws InterruptedException {
-
- // 开始的倒数锁
- final CountDownLatch begin = new CountDownLatch(1);
-
- // 结束的倒数锁
- final CountDownLatch end = new CountDownLatch(10);
-
- // 十名选手
- final ExecutorService exec = Executors.newFixedThreadPool(10);
-
- for (int index = 0; index < 10; index++) {
- final int NO = index + 1;
- Runnable run = new Runnable() {
- public void run() {
- try {
- begin.await();
- Thread.sleep((long) (Math.random() * 10000));
- System.out.println("No." + NO + " arrived");
- } catch (InterruptedException e) {
- } finally {
- end.countDown();
- }
- }
- };
- exec.submit(run);
- }
- System.out.println("Game Start");
- begin.countDown();
- end.await();
- System.out.println("Game Over");
- exec.shutdown();
- }
-
- }
使用Callable和Future实现线程等待和多线程返回值
假设在main线程启动一个线程,然后main线程需要等待子线程结束后,再继续下面的操作,我们会通过join方法阻塞main线程,代码如下:
- Runnable runnable = ...;
- Thread t = new Thread(runnable);
- t.start();
- t.join();
- ......
通过JDK1.5线程池管理的线程可以使用Callable和Future实现(join()方法无法应用到在线程池线程)
- import java.util.concurrent.Callable;
- import java.util.concurrent.ExecutionException;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Future;
-
- public class Test {
-
- public static void main(String[] args) throws InterruptedException, ExecutionException {
- System.out.println("start main thread");
- final ExecutorService exec = Executors.newFixedThreadPool(5);
-
- Callable<String> call = new Callable<String>() {
- public String call() throws Exception {
- System.out.println(" start new thread.");
- Thread.sleep(1000 * 5);
- System.out.println(" end new thread.");
- return "some value.";
- }
- };
- Future<String> task = exec.submit(call);
- Thread.sleep(1000 * 2);
- task.get(); // 阻塞,并待子线程结束,
- exec.shutdown();
- exec.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
- System.out.println("end main thread");
- }
-
- }
- import java.util.ArrayList;
- import java.util.List;
- import java.util.concurrent.Callable;
- import java.util.concurrent.ExecutionException;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Future;
-
- /**
- * 多线程返回值测试
- */
- public class ThreadTest {
-
- public static void main(String[] args) throws InterruptedException, ExecutionException {
- System.out.println("start main thread");
- int threadCount = 5;
- final ExecutorService exec = Executors.newFixedThreadPool(threadCount);
-
- List<Future<Integer>> tasks = new ArrayList<Future<Integer>>();
- for (int i = 0; i < threadCount; i++) {
- Callable<Integer> call = new Callable<Integer>() {
- public Integer call() throws Exception {
- Thread.sleep(1000);
- return 1;
- }
- };
- tasks.add(exec.submit(call));
- }
- long total = 0;
- for (Future<Integer> future : tasks) {
- total += future.get();
- }
- exec.shutdown();
- System.out.println("total: " + total);
- System.out.println("end main thread");
- }
- }
CompletionService
这个东西的使用上很类似上面的example,不同的是,它会首先取完成任务的线程。下面的参考文章里,专门提到这个,大家有兴趣可以看下,例子:
- import java.util.concurrent.Callable;
- import java.util.concurrent.CompletionService;
- import java.util.concurrent.ExecutionException;
- import java.util.concurrent.ExecutorCompletionService;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Future;
-
- public class Test {
- public static void main(String[] args) throws InterruptedException,
- ExecutionException {
- ExecutorService exec = Executors.newFixedThreadPool(10);
- CompletionService<String> serv =
- new ExecutorCompletionService<String>(exec);
- for (int index = 0; index < 5; index++) {
- final int NO = index;
- Callable<String> downImg = new Callable<String>() {
- public String call() throws Exception {
- Thread.sleep((long) (Math.random() * 10000));
- return "Downloaded Image " + NO;
- }
- };
- serv.submit(downImg);
- }
- Thread.sleep(1000 * 2);
- System.out.println("Show web content");
- for (int index = 0; index < 5; index++) {
- Future<String> task = serv.take();
- String img = task.get();
- System.out.println(img);
- }
- System.out.println("End");
- // 关闭线程池
- exec.shutdown();
- }
- }
Semaphore信号量
拿到信号量的线程可以进入代码,否则就等待。通过acquire()和release()获取和释放访问许可。下面的例子只允许5个线程同时进入执行acquire()和release()之间的代码
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Semaphore;
-
- public class Test {
-
- public static void main(String[] args) {
- // 线程池
- ExecutorService exec = Executors.newCachedThreadPool();
- // 只能5个线程同时访问
- final Semaphore semp = new Semaphore(5);
- // 模拟20个客户端访问
- for (int index = 0; index < 20; index++) {
- final int NO = index;
- Runnable run = new Runnable() {
- public void run() {
- try {
- // 获取许可
- semp.acquire();
- System.out.println("Accessing: " + NO);
- Thread.sleep((long) (Math.random() * 10000));
- // 访问完后,释放
- semp.release();
- } catch (InterruptedException e) {
- }
- }
- };
- exec.execute(run);
- }
- // 退出线程池
- exec.shutdown();
- }
-
- }