- OpenCV旋转估计(2)用于自动检测波浪校正类型的函数autoDetectWaveCorrectKind()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::autoDetectWaveCorrectKind是OpenCV中用于自动检测波浪校正类型的函数,它根据输入的旋转矩阵集合来决定使用哪种波浪校正模式。波浪校正(WaveCorrection)是图像拼接过程中的一部分,主要用于纠正由于相机在拍
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- 一款适用于 Windows 、Mac 和 Linux 的屏幕录制与截图软件。
Mbblovey
开发语言开源软件电脑java
Screenrec是一款适用于Windows、Mac和Linux的屏幕录制与截图软件。软件本身可以免费使用,只需要登录即可使用全部功能。当咱们打开软件后,电脑右边就会出现一个小漂浮窗。点击上方的图标就能一键开启视频录制、截屏等功能。Screenrec很有意思的是可以在开始录制屏幕的同时录制咱们的网络摄像头视频和麦克风音频。在录制完成后大家可能会发现右下角软件会给大家发出一个提醒。这就是它的另一个特
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 打开 WIN10 命令框的几种姿势
夜璨如炽
脚本办公cmd
前言作为一个程序员,命令窗一定是每个人都会接触使用的东西,最近发现身边好多人还只会在开始里找,其实还有很多便捷的打开方式,一定还有很多人不知道吧。这里给分享一下。一、WIN+R键这个应该是知道最多的吧,首先win+R键打开运行框然后输入cmd或者cmd.exe然后回车ENTER,或者点击确定。OK二、文件夹地址栏启动平时一般桌面上都会开启几个文件夹直接在红线地址栏部分,输入cmd回车,OK
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- 基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究
算法如诗
电池建模(RULBC)粒子滤波锂离子电池放电时间预测
基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究一、研究背景与意义锂离子电池作为现代储能系统的核心组件,其放电时间(End-of-DischargeTime,EOD)的准确预测对电池管理系统(BMS)的可靠性和安全性至关重要。传统方法(如安时积分法)易受噪声、温度漂移等因素干扰,而基于状态估计的滤波算法(粒子滤波/PF、卡尔曼滤波/KF)通过动态更新模型参数,能显著提升预测精度。二、
- 王者荣耀道具页面爬虫(json格式数据)
shix .
爬虫js逆向爬虫json数据库
首先这个和英雄页面是不一样的,英雄页面的图片链接是直接放在源代码里面的,直接就可以请求到,但是这个源代码里面是没有的虽然在检查页面能够搜索到,但是应该是动态加载的,源码中搜不到该链接然后就去看看是不是某个接口中返回的数据刷新了一下返回了一个json估计一些数据在这里面,我们下载下来试试没错,那接下来就是简单的拼接了下面是实现codeimportrequestsimportcsvfromurllib
- DCM4CHE图像显示
啸鸢
DCM4CHEEDicom医学影像处理
概述本文主要介绍dicom图像从拿到像素数据到显示到图像的基本过程,通过DCM4CHE获取dicom文件像素数据,通过默认窗宽窗位,显示到java的BufferedImage上,并将BufferedImage保存成jpg到本地有关窗宽窗位的解释和处理方法可以参考:https://blog.csdn.net/songzitea/article/details/8505469通过DCM4CHE获取di
- Windows 图形显示驱动开发-WDDM 3.0功能- D3D12 视频编码(一)
程序员王马
windows图形显示驱动开发驱动开发windows
关于Direct3D12视频编码在Windows11(WDDM3.0)之前,DirectX12提供了应用程序和驱动程序级接口(API和DDI),以支持多个视频应用程序的GPU加速,包括视频解码、视频处理和运动估计。从Windows11开始,D3D12向现有视频API/DDI系列添加了视频编码功能。此功能提供一组一致的编码API/DDI,这些API/DDI与现有的D3D12框架一致,并允许开发人员使
- Biobank genetic data探析(三)
想摸鱼的生信小白
GWAS自学历程大数据
Biobankgeneticdata探析(三)——GenotypingprocessandsampleQC一.总览Category100313这类数据包含了Affymetrix做Genotypecalling的pipeline的流程信息(后续分析中可能用不到),以及样本质量控制的信息(下游分析中估计是必用了)。二.数据集描述2.1Genotypingprocess查看之后发现这部分不是很重要,毕竟
- Github开源库Xpopup代码阅读
月亮下的小草屋
github开源库代码阅读android
前言很久没写点东西了,在家闲着考了个驾照,花了一个半月,中国的驾考真的是没眼看,刚拿到驾照当天就被疫情封闭在家,直接封了一个多月,人都麻了,再来一次估计直接过年了,最近刚开始干点活。Xpopup是我非常喜欢的一个Github开源库,一直在用,我在Xpopup2.x版本的时候看过一遍它的代码,现在已经更新到3.x版本了,这两天也没啥事,又重新看了一遍,Xpopup的代码还是很容易阅读的,有兴趣的话可
- 【数学基础】第十三课:参数估计
x-jeff
机器学习必备的数学基础机器学习
1.参数估计参数估计是统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,可分为:点估计。区间估计。1.1.参数估计和假设检验参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数在估计前是未知的。而在假设检验中,则是先对总体参数值提出一个假设,然后利用样本信息去
- Day65 | 灵神 | 二分查找:红蓝染色法
为了前进而后退,为了走直路而走弯路
刷题记录数据结构算法学习笔记二分查找c++
Day65|灵神|二分查找:红蓝染色法灵神讲解的非常好建议大家去听听灵神的,二分查找就是常忘常学常新,我之前学过很多次二分,但这次还是有新的理解,我把可能比较难理解的点写到了下面,大家没看懂视频的地方可以看看我写的当然主要的其实是check函数,在本题中就是大于等于target这个条件,估计灵神下个视频会讲吧二分查找红蓝染色法【基础算法精讲04】_哔哩哔哩_bilibili文章目录Day65|灵神
- 定积分及其在概率论与统计学中的应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
定积分及其在概率论与统计学中的应用1.背景介绍1.1定积分的概念定积分是微积分学中一个基本概念,它是对连续函数在一个区间上的累积变化量进行测度。定积分可以看作是对无限小量的累加,是对函数在给定区间内的面积进行测量。1.2定积分在概率论与统计学中的重要性在概率论和统计学中,定积分扮演着非常重要的角色。概率论中的概率密度函数、累积分布函数等核心概念都需要借助定积分来定义和计算。统计学中的置信区间估计、
- 使用自定义域名访问github上的pages
六圈儿
建站github域名
1.什么是pages大家应该知道github提供了pages功能,详细介绍见pages.github.com(英文的,估计很少人仔细看)。其实就是,可以把你的代码仓库作为静态站点的资源文件。对于普通用户来说又分为两种pages:userpages和projectpages。1.userpages的仓库名必须是username.github.io比如我的github账号时zhouchangxun,所
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 乙巳年二月十七风阳思
一叶迎秋
文心一言
乙巳年二月十七风阳思时风阳光下,传承文化上。多说利益中,莫陷江湖网。光纤织古意,霓虹映禅窗。史河沙金分,历程台面账。
- j2ee java是什么意思,j2ee是什么
sherlockhj
j2eejava是什么意思
熟悉Java的人有很多,但对于j2ee,很多人估计都是次听说了。那么这个j2ee是什么呢?它和Java有着什么千丝万缕的联系呢?1、j2ee是什么?要想知道j2ee是什么,必须先知道Java的三大分支。Java分为三个体系,分别为JavaSE(标准版),JavaEE(企业版),JavaME(微型版)这样看来的话,j2ee是属于java三大分支的一个。j2ee是一套全然不同于传统应用开发的技术架构,
- 机器视觉|手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计
RockLiu@805
机器视觉YOLO
手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计在实时计算机视觉应用中,手部检测与关键点估计是实现手势识别的重要基础。本文将介绍一种基于深度学习的手势识别技术方案,通过结合YOLOv5物体检测网络和MediaPipe关键点检测框架,实现实时的手部定位与关键点提取。技术背景gesturerecognition作为计算机视觉领域的重要研究方向,在HCI(人机交互)、遥控行为分析、虚
- opencv图像视频的加载和显示
NDNPOMDFLR
opencvpython
opencv图像视频的加载和显示基于上篇文章,在开始之前需要在上级目录里打开jupyternotebook首先需要进入scrips目录里进行激活,然后如果在该目录下输入jupyternotebook的话,不太好所以需要进入上级目录创建和显示窗口需要牢记的命令namedWindow()创建命令窗口imshow()显示窗口destroyAllwindows()摧毁窗口resizeWindow()改变窗
- 3D FFT在波束形成中的详细解释
DuHz
算法信息与通信信号处理
3DFFT在波束形成中的详细解释1.引言在雷达、声呐和无线通信等领域,为了从空间中获取目标或信号的方向信息,通常需要用到波束形成(Beamforming)技术。波束形成可以理解为一种通过数字信号处理手段,将天线阵列(或传感器阵列)接收的多路信号进行加权和,形成对特定方向(或多个方向)的增强或抑制,从而实现对目标/信号的方位估计与检测的技术。1.11D,2D,和3D波束形成1D波束形成通常针对线阵(
- python 实现 A* 算法
dev.null
Pythonpython算法开发语言
A*算法是一种广泛使用的路径搜索算法,结合了启发式搜索和Dijkstra算法的优点。它通过评估每个节点的代价函数(f(n)=g(n)+h(n))来选择最优路径,其中:(g(n))是从起点到当前节点的实际代价。(h(n))是从当前节点到目标节点的启发式估计代价(如曼哈顿距离或欧几里得距离)。以下是一个Python实现的A*算法示例:Python实现A*算法importheapqfrommathimp
- Flutter-跑马灯效果实现
clmd_ld
flutter_dartflutterandroid
1、背景:使用三方组件在首页做个跑马灯效果,隔一段时间首页会闪一下,估计是三方组件有内存泄露。趁有空自己写个简单跑马灯效果。2、效果:3、调用方法:将下方代码copy到项目文件内,引用文件,调用构建方法import'package:clmd_flutter/components/marquee.dart';Marquee(child:Row(children:[Text('Flutter跑马灯效果
- 机器学习驱动的智能化电池管理技术与应用
萌萌可爱郭德纲
机器学习人工智能
电池管理技术概述电池的工作原理与关键性能指标电池管理系统的核心功能ØSOC估计ØSOH估计Ø寿命预测Ø故障诊断人工智能机器学习基础人工智能的发展机器学习的关键概念机器学习在电池管理中的应用案例介绍人工智能在电池荷电状态估计中的应用荷电状态估计方法概述基于迁移学习的SOC估计(1)基于迁移学习的SOC估计方法数据集、估计框架、估计结果(2)全生命周期下的SOC估计方法数据集、估计框架、估计结果基于数
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- DeepSeek创始人专访:中国的AI不可能永远跟随,需要有人站到技术的前沿
AIBigModel
人工智能
来源:暗涌Waves,整理:FounderPark因为V3版本开源模型的发布,DeepSeek又火了一把,而且这一次,是外网刷屏。训练成本估计只有Llama3.1405B模型的11分之一,后者的效果还不如它。在多项测评上,DeepSeekV3达到了开源SOTA,超越Llama3.1405B,能和GPT-4o、Claude3.5Sonnet等TOP模型正面掰掰手腕——而其价格比Claude3.5Ha
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟