网络流—最大流(Edmond-Karp算法)

首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和


EK算法的核心
反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。
在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。
而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

网络流—最大流(Edmond-Karp算法)_第1张图片

这么一个图,求源点1,到汇点3的最大流

由于我是通过模版真正理解ek的含义,所以先上代码,通过分析代码,来详细叙述ek算法

View Code 
 #include <iostream>
 #include <queue>
 #include<string.h>
 using namespace std;
 #define arraysize 201
 int maxData = 0x7fffffff;
 int capacity[arraysize][arraysize]; //记录残留网络的容量
 int flow[arraysize];                //标记从源点到当前节点实际还剩多少流量可用
 int pre[arraysize];                 //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中
 int n,m;
 queue<int> myqueue;
 int BFS(int src,int des)
 {
     int i,j;
     while(!myqueue.empty())       //队列清空
         myqueue.pop();
     for(i=1;i<m+1;++i)
     {
         pre[i]=-1;
     }
     pre[src]=0;
     flow[src]= maxData;
     myqueue.push(src);
     while(!myqueue.empty())
     {
         int index = myqueue.front();
         myqueue.pop();
         if(index == des)            //找到了增广路径
             break;
         for(i=1;i<m+1;++i)
         {
             if(i!=src && capacity[index][i]>0 && pre[i]==-1)
             {
                  pre[i] = index; //记录前驱
                  flow[i] = min(capacity[index][i],flow[index]);   //关键:迭代的找到增量
                  myqueue.push(i);
             }
         }
     }
     if(pre[des]==-1)      //残留图中不再存在增广路径
         return -1;
     else
         return flow[des];
 }
 int maxFlow(int src,int des)
 {
     int increasement= 0;
     int sumflow = 0;
     while((increasement=BFS(src,des))!=-1)
     {
          int k = des;          //利用前驱寻找路径
          while(k!=src)
          {
               int last = pre[k];
               capacity[last][k] -= increasement; //改变正向边的容量
               capacity[k][last] += increasement; //改变反向边的容量
               k = last;
          }
          sumflow += increasement;
     }
     return sumflow;
 }
 int main()
 {
     int i,j;
     int start,end,ci;
     while(cin>>n>>m)
     {
         memset(capacity,0,sizeof(capacity));
         memset(flow,0,sizeof(flow));
         for(i=0;i<n;++i)
         {
             cin>>start>>end>>ci;
             if(start == end)               //考虑起点终点相同的情况
                continue;
             capacity[start][end] +=ci;     //此处注意可能出现多条同一起点终点的情况
         }
         cout<<maxFlow(1,m)<<endl;
     }
     return 0;
 }

显而易见capacity存变的流量,进行ek求解

对于BFS找增广路:

1.         flow[1]=INF,pre[1]=0;

        源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=20>0,则flow[4]=min(flow[1],20)=20;

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,但是pre[4]=1(已经在capacity[1][4]这遍历过4号点了)

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

路径也自然变成了这样:

网络流—最大流(Edmond-Karp算法)_第2张图片

2.flow[1]=INF,pre[1]=0;

 源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=0!>0,跳过

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,pre[4]=2,则flow[2][4]=min(flow[2]=40,20)=20;

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

 图也被改成

  网络流—最大流(Edmond-Karp算法)_第3张图片

接下来同理

网络流—最大流(Edmond-Karp算法)_第4张图片

这就是最终完成的图,最终sumflow=20+20+10=50(这个就是最大流的值)

 

 

PS,为什么要有反向边呢?

 网络流—最大流(Edmond-Karp算法)_第5张图片

我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

网络流—最大流(Edmond-Karp算法)_第6张图片

 

这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

网络流—最大流(Edmond-Karp算法)_第7张图片

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

网络流—最大流(Edmond-Karp算法)_第8张图片

 

那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

至此,最大流Edmond-Karp算法介绍完毕。


你可能感兴趣的:(网络流—最大流(Edmond-Karp算法))