- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- Python和R均方根误差平均绝对误差算法模型
亚图跨际
Python交叉知识R回归模型误差指标归一化均方根误差生态状态指标神经网络成本误差气体排放气候模型多项式拟合
要点回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型Python误差指标均方根误差和平均绝对误差均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估计值之间的差异。估计器θ^\hat{\theta}θ^相对于估计参数θ\thetaθ的RMSD定义为均方误差的平方根:RMSD(θ^)=MSE(θ^)=E((θ^−θ
- python图像处理的图像几何变换
yava_free
图像处理python计算机视觉
一.图像几何变换图像几何变换不改变图像的像素值,在图像平面上进行像素变换。适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的负面影响。几何变换常常作为图像处理应用的预处理步骤,是图像归一化的核心工作之一[1]。一个几何变换需要两部分运算:空间变换:包括平移、缩放、旋转和正平行投影等,需要用它来表示输出图像与输入图像之间的像素映射关系。灰度插值算法:按照这
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 深度学习速通系列:归一化和批量归一化
Ven%
深度学习速通系列自然语言处理人工智能深度学习python机器学习
在深度学习中,归一化和批量归一化是两种常用的技术,它们有助于提高模型的训练效率和性能。下面详细解释这两种技术:归一化(Normalization)归一化是指将数据的数值范围调整到一个特定的区间,通常是[0,1]或者[-1,1],或者使其具有零均值和单位方差。这样做的目的是减少不同特征之间的数值范围差异,使得模型训练更加稳定和高效。常见的归一化方法包括:最小-最大归一化(Min-MaxScaling
- 2025秋招计算机视觉面试题(十一) - 为什么输入网络前要对图像做归一化
微凉的衣柜
计算机视觉人工智能语言模型机器学习
问题在将图像输入到深度学习网络之前,一般先对图像进行预处理,即图像归一化,为什么需要这么做呢?问题背景在面试的时候,面试官先问的问题是“机器学习中为什么要做特征归一化”,我的回答是“特征归一化可以消除特征之间量纲不同的影响,不然分析出来的结果显然会倾向于数值差别比较大的特征,另外从梯度下降的角度理解,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解”。接着面试官又问“图像的像
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- Lucece评分公式OKapi BM25原理解析(中)
双人余_先生
背景:延续上篇写了TF/IDF的公式解析,本篇为BM25解析简单介绍。BM25起源于概率相关性模型,而不是矢量空间模型,但是该算法与Lucene的实际评分功能有很多共同点。两者都使用Term词频率,逆文档频率和字段长度归一化,但是每个因素的定义都略有不同。与其详细解释BM25公式,不如将重点放在BM25提供的实际优势上。BM25是一个词袋检索功能,它基于每个文档中出现的查询词对一组文档进行排名,而
- 用MATLAB 画一个64QAM的星座图
nb_lte_5G
matlab算法开发语言
由于QAM采用幅度和相位二维调制,其频谱效率大大提高,而且不同点的欧式距离也要大于调幅AM调制方式,QAM也是LTE和5GNR首选的调制方式,本期教大家画一个64QAM的星座图。如下:首先产生一个64QAM的调制数据,幅度归一化SymbolAlphabet=[complex(3,3)complex(3,1)complex(1,3)complex(1,1)complex(3,5)complex(3,
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- matlab图像归一化方法
有梦想的炸豆皮
matlabmatlab
B为二维矩阵,大小为16*16一、max-min归一化:Bmax=max(max(B));Bmin=min(min(B));B=(B-Bmin)/(Bmax-Bmin);二、B=B/255B=B/65535三、B=im2double(B)%把图像转换成double精度类型(0~1)
- 相机坐标系转换世界坐标系,zed&imu&depth
Diros1g
数码相机计算机视觉人工智能
1.问题背景相机的安装的是带一定的倾角,而且车辆是行驶在非铺装路面,车辆是会倾斜的。1.1根据内参消除畸变,修正焦点转换关系焦距(fx,fy):焦距参数表示成像平面与相机光心之间的距离,它们决定了成像的大小。在数学上,fx和fy是归一化焦距,它们与相机的实际焦距f以及像素尺寸dx和dy(单位通常为毫米/像素)有关,具体关系为fx=f*dx,fy=f*dy。焦距参数影响成像的视角和物体在图像中的大小
- PyTorch 基础学习(14)- 归一化
花千树-010
PyTorchpytorch学习人工智能
系列文章:《PyTorch基础学习》文章索引概述归一化是数据预处理中的重要步骤之一,它可以将数据调整到特定的范围或分布,有助于加速训练并提高模型的性能。在机器学习中,不同的归一化方法适用于不同的场景。本文将详细介绍scikit-learn中的常见归一化方法及其应用。1.Min-Max归一化MinMaxScalerMin-Max归一化将数据缩放到指定范围,通常是[0,1]。这种方法保留了数据的相对关
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形成全新的EPA注意力机制和C2f_EPA(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测机器学习神经网络
1.EPAAttention介绍EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。(1).综合性与多样性EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强能力,以及ParNetAttention的空间注意力和全局特征提取能力。通过这种多样化的组合,EPAAttent
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 第七届MathorCup高校数学建模挑战赛-A题:基于改进的神经网络和混沌时间序列预测控制高炉炼铁过程
格图素书
大数据竞赛赛题解析数学建模神经网络人工智能
目录摘要一.问题重述二.模型假设三.符号说明四.问题分析五.数据预处理5.1异常值剔除5.2归一化处理5.3预处理后的数据六.问题一模型的建立与求解6.1BP神经网络预测模型6.1.1输入层和输出层6.1.2训练集和验证集6.1.3三层BP神经网络结构6.1.4BP神经网络的参数6.1.6相关性分析6.2小波神经网络预测模型6.2.1小波神经网络的结构6.2.2小波神经网络的基函数6.2.3小波神
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- C++ 多路音频pcm混音算法
独行者717
音视频pcm
1、均值化混音算法不适合商用,声音的损失比较大,不建议用,建议用第二种声音混音shortremix(shortpcm1,shortpcm2){intvalue=pcm1+pcm2;return(short)(value/2)}2、归一化混音算法输入数据为48Khz-2-16bit音频数据方法:为避免发生溢出,使用一个可变的衰减因子对语音进行衰减。这个衰减因子也就代表语音的权重,衰减因子随着音频数据
- [转载] Python 快速入门实战教程
ey_snail
参考链接:Python|如何以及在哪里应用特征缩放/归一化课程介绍2017年末,Python在国务院《新一代人工智能发展规划的通知》中被列入教学大纲,一时风头无两。Python因其在人工智能领域的先天优势,深受欢迎,不难预见,它在未来将大有可为。两年前,因项目需要,作者首次接触Python,从此便一发不可收,基于Python完成了多个项目的开发。一路走来,深感书本与实践脱离之痛,市面上种类繁多的编
- VIO第3讲:基于优化的IMU与视觉信息融合之视觉残差雅可比推导
兔子不吃草~
从零开始手写VIO视觉重投影残差与雅可比推导从0手写vio
VIO第3讲:基于优化的IMU与视觉信息融合之视觉残差函数构建文章目录VIO第3讲:基于优化的IMU与视觉信息融合之视觉残差函数构建3视觉重投影残差的Jacobian3.1视觉重投影残差①估计值(预测值)推导引出因子图-优化变量简化形式②观测值3.2重投影残差雅可比J①残差对归一化坐标点fcj{\mathbf{f}_{c_j}}fcj导数②归一化坐标点fcj{\mathbf{f}_{c_j}}fc
- 【华为OD机试题】寻找最优的路测线路 Java代码实现
一般路过糸.
华为odjava开发语言动态规划
题目描述评估一个网络的信号质量,其中一个做法是将网络划分为栅格,然后对每个栅格的信号质量计算。路测的时候,希望选择一条信号最好的路线(彼此相连的栅格集合)进行演示。现给出R行C列的整数数组Cov。每个单元格的数值S即为该栅格的信号质量(已归一化,无单位,值越大信号越好)。要求从[0,0]到[R-1,C-1]。设计一条最优路测路线。返回该路线得分规则:1.路测路线可以上下左右四个方向,不能对角2.路
- 09基于粒子群优化BP神经网络数据回归预测算法PSO-BP【附Matlab源码】只讲代码不讲原理
机器不会学习CSJ
数据回归专栏算法神经网络回归机器学习matlab
文章目录一、粒子群优化算法二、BP神经网络核心代码三、完整过程1、读取数据2、划分数据3、数据归一化4、计算优化节点数量5、粒子群优化参数初始化6、提取最优初始权值和阈值通过粒子群优化的最佳权重矩阵7、训练网络和预测数据结合前面BP设置网络参数代码8、绘图和计算评价指标三、实验结果四、获取完整代码和数据一、粒子群优化算法核心计算公式%%参数初始化c1=4.494;%学习因子c2=4.494;%学习
- GEE案例——如何sentinel-2影像利用NDWI归一化水体指数进行长时序水域分析(2015-2023年滇池为例)
此星光明
GEE案例分析前端服务器时序sentinel影像JavaScript面积
简介Sentinel-2是一颗遥感卫星,其提供的高分辨率数据可以广泛应用于环境监测、土地利用和水资源管理等领域。其中,利用归一化水体指数(NormalizedDifferenceWaterIndex,NDWI)来进行长时序水域分析是一种常见的方法。本文将介绍NDWI的定义和计算方法,并结合Sentinel-2影像的使用,详细说明如何进行长时序水域分析。首先,我们来看一下NDWI的定义和计算方法。N
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- 【无标题】Matlab 之axes函数——创建笛卡尔坐标区
weixin_44202064
matlab开发语言
**基本用法:**axes在当前图窗中创建默认的笛卡尔坐标区,并将其设置为当前坐标区。应用场景1:在图窗中放置两个Axes对象,并为每个对象添加一个绘图。要求1:指定第一个Axes对象的位置,使其左下角位于点(0.10.1)处,宽度和高度均为0.7。指定第二个Axes对象的位置,使其左下角位于点(0.650.65)处,宽度和高度均为0.28。默认情况下,所有值为基于图窗的归一化值。将这两个Axes
- 车牌识别-基于模板匹配
勇敢歪歪
matlab开发语言
基于模板匹配的车牌识别一、设计思路二、功能模块1、GUI界面创建2、图片选择3、车牌粗定位4、灰度化5、倾斜矫正6、二值化和第一次形态学处理7、精确定位8、第二次形态学处理9、字符分割10、归一化切割后的字符以及模板11、字符匹配12、语音播报13、退出系统和关于按钮三、总的操作图一、设计思路车牌识别程序的设计主要基于车牌的固有特点,这些特点指导算法的设计。在一个识别系统中首先选择某一个或几个车牌
- 基于PSO优化的GRU多输入时序回归预测(Matlab)粒子群优化门控循环单元神经网络时序回归预测
神经网络与数学建模
机器学习与神经网络gru回归matlab神经网络预测时序粒子群算法
目录一、程序及算法内容介绍:基本内容:亮点与优势:二、实际运行效果:三、部分程序:四、完整代码+数据分享下载:一、程序及算法内容介绍:基本内容:本代码基于Matlab平台编译,将PSO(粒子群算法)与GRU(门控循环单元神经网络)结合,进行多输入数据回归预测输入训练的数据包含8个特征,1个响应值,即通过8个输入值预测1个输出值(多变量回归预测,输入输出个数可自行指定)归一化训练数据,提升网络泛化性
- MIT-BEVFusion系列九--CUDA-BEVFusion部署2 create_core之参数设置
端木的AI探索屋
自动驾驶cudacuda-bevfusionnvidia部署模型算法部署bev
目录加载命令行参数main函数中的create_core图像归一化参数体素化参数稀疏卷积网络参数真实世界几何空间参数(雷达坐标系下体素网格的参数)解码后边界框的参数构建bevfusion::Core存储推理时需要的参数本章开始,我们将一起看CUDA-BEVFusion的代码流程,看看NVIDIA部署方案的思路方法。加载命令行参数将代码debug起来,launch.json中配置好了传入的参数。C+
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它