- JVM调优实战 Day 11:JVM参数调优最佳实践
在未来等你
JVM调优实战JVMJava性能优化调优虚拟机
【JVM调优实战Day11】JVM参数调优最佳实践文章标签jvm,jvm调优,java性能优化,jvm参数配置,垃圾回收,JVM监控,Java开发,架构设计文章简述在Java应用的性能调优过程中,JVM参数的合理配置是影响系统稳定性和吞吐量的关键因素。本文作为“JVM调优实战”系列的第11天内容,全面讲解JVM参数调优的核心概念、技术原理与实际应用场景。文章从JVM内存模型、GC策略出发,深入分析
- 【软件系统架构】系列四:数字信号处理器(DSP)
目录一、什么是DSP?二、DSP的核心架构特点1.基本结构2.工作流程:3.关键特性:三、DSP与MCU/MPU/NPU的对比四、DSP与通用处理器的对比五、常用DSP算法类型六、常见DSP芯片平台七、开发工具链与语言支持八、典型应用场景举例通信领域:音频处理:图像与视频处理:工业控制:军事与航空航天:九、选型关键因素十、技术趋势总结一、什么是DSP?DSP(DigitalSignalProces
- 对话式数据分析与Text2SQL Agent产品可行性分析思考
Text2SQLAgent产品可行性分析报告版本BG:基于一些手撸Text2SQL的产品MVP,进一步进行商业化思考。目标输出包含市场、技术、开发、商业模式及护城河策略的完整可行性分析报告,支撑产品决策。✅市场调研与竞品分析研究内容:市场现状与趋势全球Text2SQL技术应用场景(金融、零售、医疗等)2023-2028年复合增长率(CAGR)及驱动因素(如低代码、AI民主化)竞品分析矩阵竞品类型代
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- MATLAB算法实战应用案例精讲-【数模应用】主效应&交互效应&单独效应
林聪木
matlab算法开发语言
目录前言几个相关概念因素和水平主效应单纯主效应交互作用效应或影响(effect)因素之间的相互制约和影响两因素交互作用三因素及多因素交互作用几个高频面试题目什么是主效应,交互效应,单独效应?回归分析中是必须加入控制变量的吗?如果假如控制变量之后,显著性不高了该怎么办?控制变量说明控制变量选择控制变量处理主效应和交互效应的联系与区别如何依据主效应和交互效应描述结果?算法原理数学模型主效应二分变量交互
- MySQL(106)如何设计分片键?
辞暮尔尔-烟火年年
MySQLmysql数据库
设计分片键(ShardingKey)是数据库分片的核心,它决定了将数据分配到不同分片的方式。一个好的分片键应该能够均衡地分布数据,避免热点问题,提高查询性能。下面将详细介绍如何设计分片键,并结合代码进行说明。1.选择分片键的考虑因素唯一性和可变性:分片键应该具有唯一性或较高的离散度,避免集中在某些分片。查询模式:根据查询模式选择合适的分片键,以优化查询性能。数据增长:考虑数据量的增长,分片键应能支
- 探秘阿里云Tair KVCache:大模型推理的加速引擎
云资源服务商
阿里云云计算人工智能
一、引言近年来,人工智能领域发展迅猛,大语言模型(LLM)不断取得突破,其应用场景也日益广泛。从智能客服到内容生成,从智能写作到智能翻译,大语言模型正在深刻地改变着我们的生活和工作方式。随着模型规模的不断扩大和推理需求的日益增长,大模型推理过程中的显存瓶颈问题逐渐凸显,成为制约其发展和应用的关键因素。在大模型推理中,KVCache技术作为一种优化手段,通过缓存历史Token的Key/Value向量
- 基于MATLAB的资源优化与工期固定-资源均衡分析方法研究【附代码】
拉勾科研工作室
matlab开发语言
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)资源均衡优化相关理论与问题分类在现代工程项目中,资源的合理分配和使用是确保项目按时完成、成本可控的关键因素。资源均衡优化作为项目管理中的核心环节,旨在通过调整资源的使用方案,使资源消耗在整个工期内尽可能平稳,避免
- 2019-2020年线上睡眠市场深度分析报告
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本报告全面分析了2019至2020年间中国线上消费者购买睡眠相关产品的行为和趋势。报告内容涉及市场概况、消费偏好、消费者行为、地域差异及未来展望,详细解读了消费者对多种睡眠产品的偏好及线上市场的发展。京东平台的数据为研究提供了丰富的实证,包括市场增长、产品多样化、高端产品需求上升、科技产品的发展、购买时段、年龄分布、决策因素以及地域差异等。报告指出,健康意识和
- 手机屏像素缺陷修复及相关液晶线路激光修复原理
syncon12
科技制造3d
摘要手机屏像素缺陷严重影响显示效果,而液晶线路异常是导致像素缺陷的关键因素之一。激光修复技术凭借高精度与非接触特性,能够有效修复液晶线路,进而改善像素显示。本文分析手机屏像素缺陷类型,探究液晶线路激光修复原理、工艺及参数优化,为提升手机屏显示质量提供理论支撑。引言随着手机屏向高分辨率、高刷新率方向发展,像素密度不断提升,像素缺陷问题愈发凸显。液晶线路作为控制像素显示的核心结构,其断路、短路、信号传
- 疲劳检测与行为分析:工厂智能化实践
智驱力人工智能
安全智慧城市行为识别人员属性识别疲劳检测抽烟检测徘徊检测
视觉分析算法赋能工厂疲劳与安全管理一、背景与需求在制造业中,疲劳作业是导致安全事故和效率下降的核心因素之一。传统人工巡检存在覆盖面不足、响应滞后等问题,而基于视觉分析的智能监控系统通过多算法协同,可实现全天候、高精度的疲劳检测与行为管理。本文围绕疲劳检测算法、人员计数算法、抽烟检测算法及徘徊检测算法,探讨其在工厂场景中的技术实现与应用价值。二、技术实现疲劳检测算法原理:基于PERCLOS(眼睑闭合
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)
QQ67658008
YOLO音视频qt桃子成熟水果成熟度检测系统
基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)文章目录调用示例加载预训练模型开始训练加载训练好的模型在验证集上评估加载训练好的模型文字及代码仅供参考。桃子成熟度分类检测数据集,主要用于桃子成熟度分类检测应用任务数据背景:模拟实际田间条件,涵盖多种可能影响桃子检测准确性的因素,如变化的自然光照强度、多果粘连现象以及由枝
- 大模型在坏疽及穿孔性阑尾炎预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术概述2.1大模型原理与架构2.2医学领域相关应用案例三、坏疽及穿孔性阑尾炎的术前预测3.1危险因素分析3.2大模型预测模型构建3.3预测结果与临床评估四、基于预测的手术方案制定4.1手术方式选择依据4.2手术步骤与关键要点4.3案例分析五、麻醉方案确定5.1麻醉方式选择5.2麻醉药物使用5.3麻醉过程监测与管理六、术中情况监测与处
- AI辅助大前端开发的性能瓶颈突破与体验优化
在大前端开发技术飞速发展的当下,应用功能日趋复杂,性能瓶颈已成为制约用户体验的关键因素。AI凭借强大的数据分析与智能决策能力,为大前端开发带来了性能优化的新思路。本文将结合小程序、APP和Web等典型开发场景,深入探讨AI在大前端性能优化中的具体应用,并通过丰富的代码示例展示实践过程。一、资源加载优化(一)智能资源预加载在大前端应用中,资源加载速度直接影响页面的启动时间。AI通过分析用户行为数据和
- (简介)因果中介分析(Causal Mediation Analysis)
音程
人工智能人工智能
因果中介分析(CausalMediationAnalysis)是因果推断领域的一个重要方法,用于研究某个自变量(如干预措施或处理因素)对因变量(结果)的影响是否通过某个中介变量(Mediator)间接产生作用。它旨在分解总效应(TotalEffect)为直接效应(DirectEffect)和间接效应(IndirectEffect),从而揭示因果关系的潜在机制。核心概念:变量定义:自变量(X):研究
- 应对跨境新规:电商税合规4项紧急自查清单
跨境卫士小树
大数据经验分享
2025年,全球多个国家和地区对跨境电商税收政策加码已成趋势。无论是欧洲VAT规则的持续收紧、美国各州的销售税细化执行,还是新兴市场对进口电商平台开征数字服务税,都让卖家们感到“合规”压力陡增。尤其是对于在eBay、亚马逊、Shopee等多平台运营的中国跨境卖家来说,税务这件事已不再只是“财务部门的事”,而成为影响整体运营节奏和账号稳定性的关键因素之一。很多卖家其实是“被动触碰合规”的。一个广东卖
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- [论文阅读] 软件工程 | 探索软件生态系统中的开发者体验关键因素
探索软件生态系统中的开发者体验关键因素:从研究到实践引文格式@article{Zacarias2025,title={ExploringDeveloperExperienceFactorsinSoftwareEcosystems},author={Zacarias,RodrigoOliveiraandAntunes,L{\'e}oCarvalhoRamosandBarros,M{\'a}rciod
- 一个LoRa网关的容量多大?
豆豆在西安
LoRa网关网络服务器运维
在LoRaWAN网络部署过程中,客户最常问的问题之一就是:“一个LoRa网关能接入多少设备?”这个问题看似简单,实则涉及多个技术参数和业务场景。LoRa网关的容量并不是一个固定的数字,而是受到多种因素的影响。本文将带你深入了解LoRa网关的系统容量是如何计算的,以及影响容量的关键因素。一、LoRa网关的理论最大容量LoRa网关的容量与其使用的信道数量和扩频因子(SF)密切相关。以常见的8信道LoR
- FPGA与Verilog实现的Cordic算法测试项目
weixin_42668301
本文还有配套的精品资源,点击获取简介:Cordic算法是一种在FPGA和Verilog硬件描述语言中实现高效的数值计算技术,它简化了硬件资源需求,特别适合资源有限的嵌入式系统。通过模块化设计,Cordic算法可以拆分为多个子模块来实现,包括旋转步骤、误差校正和控制逻辑等。该算法通过迭代过程逼近目标值,无需乘法器,从而减少了硬件资源消耗并提高了效率。在实现时需要考虑位宽、迭代次数和误差处理等因素,以
- MATLAB安装过程中源文件服务器不可达的核心问题与解决方案
百态老人
matlab服务器php
一、核心问题分析在MATLAB网络安装过程中,源文件服务器不可达可能由以下因素导致:网络连接问题网络不稳定或完全中断,导致安装程序无法访问MathWorks服务器。本地网络配置(如DNS解析错误、代理设置不当)影响连接。防火墙/安全软件拦截操作系统防火墙或第三方防病毒软件(如Symantec、McAfee)可能阻止MATLAB访问必要端口。某些安全软件将安装程序误判为威胁,直接中断连接。VPN或代
- AI 销售系统:重塑销售格局的科技利器
小柔说科技
人工智能科技java
在数字化浪潮汹涌澎湃的当下,人工智能(AI)正以前所未有的速度渗透到各个行业,销售领域也不例外。AI销售系统作为一种融合了先进人工智能技术的创新工具,正逐渐成为企业提升销售效率、优化客户体验、增强市场竞争力的关键因素。一、AI销售系统的概念与核心技术AI销售系统是基于人工智能技术构建的一套综合性销售管理平台,它整合了自然语言处理(NLP)、机器学习(ML)、数据分析、预测建模等多种核心技术。通过这
- 内容分发网络CDN
dream_heheda
AliCloud云计算
CDN的概念内容分发网络CDN(ContentDeliveryNetwork)是解决网络连接速度的问题,可以提高访问速度。1.业务背景一般客户通过互联网访问网站服务,客户访问服务器的流程如下:Client->Internet->Server。在这个过程中,有几个影响访问速度(用户打开网页速度)的因素:client和internet之间的连接,internet中间的连接,服务器和internet之间
- 大数据领域Kafka的性能优化案例分析
AGI大模型与大数据研究院
大数据kafka性能优化ai
大数据领域Kafka的性能优化案例分析关键词:Kafka、性能优化、吞吐量、延迟、分区策略、消息压缩、监控调优摘要:本文深入探讨ApacheKafka在大数据环境中的性能优化策略。我们将从Kafka的核心架构出发,分析影响性能的关键因素,并通过实际案例展示如何通过配置调优、分区策略优化、消息压缩等技术手段显著提升Kafka集群的性能。文章包含详细的性能测试数据、优化前后的对比分析,以及可落地的优化
- 使用Hugging Face的Sentence Transformers进行文本嵌入
2501_92325368
语言模型langchain
概述HuggingFace的SentenceTransformers是一种用于生成文本和图像嵌入的Python框架,提供了最新的技术。这个框架可以通过HuggingFaceEmbeddings类来使用嵌入模型。尽管它功能强大,但在本地运行可能会受到操作系统和其他因素的影响,因此推荐给有经验的用户使用。核心原理解析SentenceTransformers基于BERT等深度学习模型,通过转化输入文本为
- fps射击游戏客户端软件架构设计
你一身傲骨怎能输
游戏框架游戏
设计一款FPS射击游戏客户端的软件架构,需要考虑许多因素,包括游戏引擎的选择、模块化设计、网络通信、性能优化等。下面是一个基本的FPS射击游戏客户端软件架构设计:游戏引擎层:这是游戏客户端的基础,常用的游戏引擎如Unity和UnrealEngine,提供了渲染、物理模拟、音频处理、输入处理等基础功能。游戏引擎层也负责与操作系统及硬件进行交互。游戏逻辑层:这一层包含游戏的核心逻辑,如角色控制、AI行
- 投稿秘籍大公开:选对媒体新闻发稿事半功倍
mycm0304
经验分享媒体经验分享
了解媒体的定位企业需要根据自身的特点和目的选择合适的媒体,确保新闻稿与媒体定位相符合。评估媒体影响力选择媒体时,影响力是关键因素之一。高影响力的媒体不仅拥有庞大的读者群,还能增强企业的品牌知名度。考虑预算与性价比每个企业的预算不同,因此在选择媒体时要考虑成本和回报的平衡。有些大型媒体虽然影响力大,但费用较高,不一定适合所有企业。媒体的传播渠道不同媒体的传播渠道和方式也不同,企业需要选择适合自己的媒
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement