- 单调栈总结
qq_43344375
刷题总结数据结构算法数据结构算法leetcode
单调栈总结+Leetcode实例单调栈1.模型识别2.原理3.模板4.例题基础版1)LeetCode739.每日温度2)LeetCode496.下一个更大元素I3)LeetCode503.下一个更大元素II4)LeetCode901.股票价格跨度5)LeetCode1019.链表中的下一个更大节点5.例题提高版1)LeetCode84.柱状图中最大的矩形2)LeetCode42.接雨水3)Leet
- 文心大模型及百度大模型内容安全平台齐获信通院大模型安全认证
百度安全
百度安全
近日,文心大模型与百度大模型内容安全平台——红线大模型双双荣获中国信息通信研究院泰尔认证中心颁发的“大规模预训练模型(文本生成功能)安全认证证书”,且二者的认证级别皆“增强级”的最高级别。大规模预训练模型(文本生成功能)安全认证证书本次认证基于《电信和互联网大规模预训练模型安全评测指标和方法》(TLC073-2024),此标准由中国信息通信研究院牵头制定,旨在为大规模预训练模型提供安全评测的风险项
- NoSQL数据库的分布式存储优化
数据库管理艺术
nosql分布式数据库ai
NoSQL数据库的分布式存储优化关键词:NoSQL、分布式存储、数据分片、一致性哈希、CAP定理、读写优化、水平扩展摘要:本文深入探讨NoSQL数据库在分布式环境下的存储优化策略。我们将从基础概念出发,分析NoSQL数据库的架构特点,详细讲解分布式存储的核心算法和数学模型,并通过实际代码示例展示优化技术的实现。文章还将覆盖实际应用场景、工具推荐以及未来发展趋势,为读者提供全面的NoSQL分布式存储
- AIGC 领域中文心一言的技术稳定性评测
SuperAGI2025
AIGC文心一言ai
AIGC领域中文心一言的技术稳定性评测关键词:AIGC、文心一言、技术稳定性评测、语言模型、准确性摘要:本文旨在对AIGC领域中的文心一言进行技术稳定性评测。通过介绍评测的背景、核心概念,阐述相关算法原理和操作步骤,结合实际案例分析,探讨文心一言在不同场景下的稳定性表现,为读者全面了解文心一言的技术能力提供参考,同时展望其未来发展面临的趋势与挑战。背景介绍目的和范围我们这次评测的目的呢,就像是给文
- 机器学习路径规划中的 net 和 netlist 分别是什么?
勤奋的大熊猫
MachineLearning机器学习人工智能自动寻路
机器学习路径规划中的net是什么?引言正文net含义netlist含义引言当我们使用机器学习训练自己的模型来进行自动寻路时,通常,我们会遇到一个名为net的词语,这里我们将对这个单词的意思进行解释。正文net含义net:中文翻译为网络,在机器学习中其中文应该翻译为连线任务。通常在连线任务中我们需要将给定的两个端点连接起来。比如给定的端点为:self.netlist=[('mmi:out1','mm
- 3D建模公司的能力与技术
zhongqu_3dnest
3d数码相机3D建模公司vr制作公司虚拟现实
在数字化时代,3D建模公司扮演着越来越重要的角色。它们是专业从事三维建模设计服务的机构或团队,利用先进的三维建模软件和技术,为客户提供从概念设计到最终成品的全流程服务。这些服务广泛应用于建筑设计、工程规划、产品设计、动画制作等多个领域。3D建模公司通常由经验丰富的设计师、工程师和技术专家组成,他们能够根据客户需求,创造出高质量的三维模型和设计方案。众趣科技,作为3D建模领域的佼佼者,凭借先进的3D
- 探索响应式设计新境界:React Native Responsive Dimensions
姚婕妹
探索响应式设计新境界:ReactNativeResponsiveDimensionsreact-native-responsive-dimensionsResposivefontSize,heightandwidthforreact-nativecomponents,thatautomaticallyadjustsitselfbasedonscreen-sizeofthedevice.项目地址:h
- Mamba-YOLOv8深度解析:基于状态空间模型的下一代目标检测架构(含完整代码与实战部署)文末含资料链接!
博导ai君
深度学习教学-附源码YOLO目标检测架构
文章目录前言一、技术背景与动机1.1传统架构的局限性1.2Mamba的创新优势二、Mamba-YOLOv8架构详解2.1整体架构设计2.2核心模块:VSSblock2.3SS2D模块工作原理三、完整实现流程3.1环境配置3.2代码集成步骤3.3训练与微调四、性能分析与优化4.1精度提升策略4.2推理加速方案4.3硬件适配技巧五、实战案例:无人机航拍检测5.1数据集准备5.2模型训练与评估六、未来研
- 认识.net mvc 框架
NPCZ
mvc
ASP.NETMVC是微软推出的一个基于.NET框架的Web应用程序开发模式,它遵循**Model-View-Controller(模型-视图-控制器)**架构模式,将应用程序分为三个核心组件:1.Model(模型)负责处理数据逻辑和业务规则,通常对应数据库表或业务对象。2.View(视图)负责展示用户界面,通常是Razor视图文件(.cshtml)。3.Controller(控制器)负责处理请求
- Java 架构演进:从瀑布模型到敏捷开发的转变
向哆哆
Java入门到精通java架构敏捷流程
Java架构演进:从瀑布模型到敏捷开发的转变一、引言在软件开发领域,Java作为一种广泛使用的编程语言,其架构设计和开发方法随着时代不断演进。从传统的瀑布模型到如今主流的敏捷开发,这一转变不仅影响着开发流程,更深刻地改变了Java架构的设计理念和实践方式。本文将深入探讨Java架构在这两种开发模式下的特点、差异以及转变过程中涉及的关键技术和实践,结合详细代码实例进行阐述。二、瀑布模型下的Java架
- FastAPI MCP 简介及使用教程
清尘沐歌
fastapiMCP
原文详细链接:FastAPIMCP是什么?怎么使用?一文介绍简单来说,FastAPIMCP是一个零配置工具,它能够自动把你的FastAPI接口转换成符合模型上下文协议(ModelContextProtocol,简称MCP)的工具。这样,AI模型就能够直接调用你的API了。说白了,它就是一个桥梁,连接你的API和各种AI模型,让AI能够"看懂"并使用你的API。这么理解,你可以让Claude或GPT
- 大语言模型应用指南:谷歌 Gemini 简介
AI天才研究院
AI大模型企业级应用开发实战AI人工智能与大数据计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:谷歌Gemini简介关键词:大语言模型,Gemini,谷歌,人工智能,应用指南1.背景介绍近年来,人工智能领域取得了突破性进展,尤其是大语言模型(LargeLanguageModels,LLMs)的出现,彻底改变了我们与信息交互的方式。从最初的聊天机器人到如今的代码生成、文本创作等领域,LLMs展现出惊人的能力。谷歌作为科技巨头,一直走在人工智能研究的前沿。继BERT、LaMD
- 仿 Twitter 点赞爱心动画效果 其中用到 animation
hackchen
html前端css
大概的原理,准备一张雪碧图,通过hover改变雪碧图的X坐标,达到动画的效果HTML:CSS:.heart{width:100px;height:100px;position:absolute;left:50%;top:50%;transform:translate(-50%,-50%);background:url("
- 用于人形机器人强化学习运动的神经网络架构分析
1.引言:人形机器人运动强化学习中的架构探索人形机器人具备在多样化环境中自主运行的巨大潜力,有望缓解工厂劳动力短缺、协助居家养老以及探索新星球等问题。其拟人化的特性使其在执行类人操作任务(如运动和操纵)方面具有独特优势。深度强化学习(DRL)作为一种前景广阔的无模型方法,能够有效控制双足运动,实现复杂行为的自主学习,而无需显式动力学模型。1.1人形机器人运动强化学习的机遇与挑战尽管DRL取得了显著
- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- 【机器学习|学习笔记】特征选择(Feature Selection)和特征提取(Feature Extraction)都是用于降维、提升模型性能和泛化能力的重要手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络
【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。文章目录【机器学习|学习笔记】特征选择(FeatureSelection)和
- paddleOCR模型的安装和使用
九日卯贝
paddleocr
paddleOCR仓库:https://github.com/PaddlePaddle/PaddleOCR?tab=readme-ov-file文档:https://paddlepaddle.github.io/PaddleOCR/main/quick_start.html#2-paddleocr环境安装python-mpipinstallpaddlepaddle-gpu==3.0.0b1-iht
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 文心4.5开源模型部署实践
skywalk8163
人工智能文心人工智能文心大模型开源大模型文心开源
文心4.5开源模型部署实践使用fastdeploy本地部署执行命令:python-mfastdeploy.entrypoints.openai.api_server\ --modelbaidu/ERNIE-4.5-21B-A3B-Paddle\ --port8180\ --metrics-port8181\ --engine-worker-queue-port8182\ --max-model-l
- Kimi Audio一个通用的音频基础模型处理各种任务如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话
skywalk8163
人工智能xcodeidekaggleKimiAudio
KimiAudio被设计为一个通用的音频基础模型,能够在一个统一的框架内处理各种音频处理任务。主要功能包括:通用功能:处理各种任务,如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话。最先进的性能:在众多音频基准测试中取得SOTA结果(见评估和技术报告)。大规模预训练:对超过1300万小时的各种音频数据
- AI里的Prompt到底是什么?——提示词
不知名产品露
AIGC
AIGC爆火以后,应运而生的Prompt到底是什么?为什么会有这个产物呢?拿大语言模型举例来说,自身的能力很强大,但也存在一定的弊端,比如输出的内容太空太泛、不是用户想要的答案、输出的内容格式不符合预期……正因为这些弊端的存在,进而催生了Prompt(提示词ArtificialIntelligencePrompt)。应用场景也比较多如:智能客服、数字人主播、智能写作助手、PPT制作等。一、定义Pr
- ART(Automatic Reasoning and Tool-use):自动推理与工具使用的革命性突破
引言在人工智能快速发展的今天,大语言模型(LLM)的能力边界正在不断被重新定义。ART(AutomaticReasoningandTool-use)技术作为一项革命性的突破,为AI系统提供了自动推理并使用外部工具的能力,这标志着我们正在迈向更加智能和实用的AI时代。什么是ART技术?ART是AutomaticReasoningandTool-use的缩写,它是一种让AI系统能够自动进行推理并调用外
- maven中settings.xml仓库配置
苏开印印印
aliyunmaven*阿里云公共仓库https://maven.aliyun.com/repository/publicrepo1centralHumanReadableNameforthisMirror.https://repo1.maven.org/maven2/repo2centralHumanReadableNameforthisMirror.https://repo2.maven.or
- 《深度学习》—— PyTorch的介绍及PyTorch的CPU版本安装
张小生180
人工智能深度学习pytorch
文章目录一、PyTorch的简单介绍二、pytorch的CPU版本安装三、torch、torchvision、torchaudio三个库的介绍一、PyTorch的简单介绍PyTorch是一个由FacebookAI实验室开发的深度学习框架,它基于Python,并提供了高效的GPU加速和灵活的模型定义能力。1.PyTorch的基本特点动态计算图:PyTorch采用动态计算图的方式,这意味着计算图是在运
- css 实现一个卡片
很菜很菜的人
cssjavascript前端
Document.box{width:300px;height:400px;}.code{height:100px;width:360px;margin-left:-30px;background-color:white;clip-path:inset(0000round0035%35%);margin-bottom:-30px;position:relative;}.inner{width:26
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- Spring Boot + 本地部署大模型实现:优化与性能提升
代码老y
springboot后端java
在将大语言模型集成到SpringBoot应用中时,性能优化是一个关键环节。本地部署的大模型虽然提供了强大的功能,但也可能带来一些性能挑战,如响应时间较长、资源占用较高等问题。本文将介绍如何在SpringBoot应用中优化本地部署大模型的性能,确保应用的高效运行。一、性能优化策略(一)缓存机制缓存生成结果:对于一些常见的输入,可以将生成的结果缓存起来。当相同的输入再次出现时,直接返回缓存的结果,而不
- VLA模型
一介绍在机器人领域,视觉-语言-动作(VLA)模型的发展经历了显著的演变,这得益于计算机视觉和自然语言处理领域的进步。VLA模型代表了一类旨在处理多模态输入的模型,整合了来自视觉、语言和动作的信息。这些模型对于实现具身智能至关重要,使机器人能够理解物理世界并与之互动。以下是VLA模型发展的时间线:早期阶段:计算机视觉和自然语言处理的集成大约在2015年开始,随着视觉问答(VQA)系统的出现。这些系
- 高可扩展属性建模设计:架构师的全局思考与落地方案
nbsaas-boot
数据库
在复杂业务系统中,动态属性扩展始终是架构设计的核心难题之一。传统方案如宽表设计和EAV(实体-属性-值)模型分别在性能与扩展性上各有优势与劣势,但也都有明显局限。为了兼顾性能、扩展性、维护成本,需要引入更灵活的设计模式。本文将深入探讨除宽表和EAV以外的几种现代解决方案,并提供综合推荐。一、问题背景:属性扩展的基本矛盾属性扩展的根本矛盾是:字段的多样性&动态性↔结构化存储&高性能查询需求变动频繁↔
- 宽表设计(Wide Table) 与 子表 + 类型 + 属性表设计(EAV 模型或“属性表”模型)
nbsaas-boot
数据库
在软件系统设计中,属性扩展(尤其是面向动态业务字段的扩展)是一个常见问题。尤其在企业应用、CMS、电商平台等场景中,经常会遇到「某个对象可能会增加不同的字段」的需求,例如:商品新增自定义字段、用户增加扩展信息等。本文将讨论两种主流方案——宽表设计(WideTable)与子表+类型+属性表设计(EAV模型或“属性表”模型),并从可维护性、性能、适用场景等方面进行系统分析。一、方案一:宽表设计(Wid
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement