- excel直接时间戳10位转时间公式
Sca_jie
excelexcel
=TEXT((A1/86400)+DATE(1970,1,1)+8/24,"yyyy-mm-ddhh:mm:ss")//A1是时间戳单元格
- Python 数据分析:numpy,抽提,基本索引。听故事学知识点怎么这么容易?
好开心啊没烦恼
numpypython数据分析numpy开发语言数据挖掘人工智能机器学习
目录1示例代码2欢迎纠错3免费爬虫------以下关于Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导
- Python 数据分析:numpy.transpose() ,转换维度。听故事学知识点怎么这么容易?
好开心啊没烦恼
numpynumpypython开发语言数据分析数据挖掘人工智能机器学习
目录1一维数组2二维数组3三维数组4欢迎纠错5免费爬虫------以下关于Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowch
- Python 编辑器:Geany,不是内部或外部命令,系统找不到指定路径
目录1找到设置选项2开始设置2.1complie2.2execute3欢迎纠错4免费爬虫------以下关于Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,
- 无铅压电陶瓷研究进展:技术突破与产业升级路径
莱歌数字
数字化转型#职场经验#结构热设计科技热设计CAE散热能源
作者简介:科技自媒体优质创作者个人主页:莱歌数字-CSDN博客公众号:莱歌数字个人微信:yanshanYH211、985硕士,职场15年+从事结构设计、热设计、售前、产品设计、项目管理等工作,涉足消费电子、新能源、医疗设备、制药信息化、核工业等领域涵盖新能源车载与非车载系统、医疗设备软硬件、智能工厂等业务,带领团队进行多个0-1的产品开发,并推广到多个企业客户现场落地实施。专题课程Flotherm
- 2.2. 泛函分析讲义I-度量空间概述
吉星照MoMo
实变泛函与测度理论数学建模
泛函分析的三大空间自然是:度量空间、线性赋范空间和Hilbert空间,由[泛函分析的起源与发展],我们知道引入度量空间和希尔伯特空间的动机是截然不同的度量空间是Frechet有意识地去引入一种抽象理论,使得这种理论能够将康托尔,沃尔泰拉以及阿尔泽拉等人的工作统一起来.内积空间是在求解积分方程的过程中创造出来的,赋范线性空间是巴拿赫系统地发展了Frechet的思想,以及利用了Hilbert空间l2,
- 16、流体力学数值模拟
404Feels
流体力学数值模拟纳维-斯托克斯方程
流体力学数值模拟1.流体力学的基本方程流体力学是研究流体(液体和气体)运动规律的学科,其基本方程是纳维-斯托克斯方程(Navier-Stokesequation)。该方程描述了流体的速度、压力、温度等物理量随时间和空间的变化。为了便于数值求解,我们需要将这些方程离散化。以下是纳维-斯托克斯方程的标准形式:[\frac{\partial\mathbf{u}}{\partialt}+(\mathbf{
- 人工智能的发展历程与未来展望
唐骁虎
ai
人工智能的发展历程与未来展望一、人工智能的起源与早期发展1.1人工智能的定义与概念起源人工智能(AI)的定义与概念起源可追溯至20世纪中叶,当时一群具有远见的科学家和工程师开始探索机器是否能够模拟人类智能行为。1956年,在达特茅斯会议上,约翰·麦卡锡首次提出了“人工智能”这一术语,标志着该领域的正式诞生。AI的定义涉及创建能够执行需要人类智能的任务的机器,如视觉感知、语音识别、决策和语言翻译等。
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- 【学习】《算法图解》第八章学习笔记:平衡树
自学也学好编程
程序人生
前言在上一章中,我们学习了二叉搜索树(BST)的基本概念和操作。虽然BST在平均情况下提供了O(logn)的搜索、插入和删除效率,但在最坏情况下(如按顺序插入数据),它可能退化为链表,导致操作效率降为O(n)。为了解决这个问题,《算法图解》第八章介绍了平衡树的概念和几种主要的平衡树结构,这些结构能够在各种情况下保持较好的平衡性,确保操作的高效性。一、平衡树的基本概念(一)什么是平衡树平衡树是一种特
- AI对话导出工具 (AI Chat Exporter)——支持 ChatGPT, Grok 和 Gemini 平台
ALGORITHM LOL
人工智能chatgpt
AI对话导出工具(AIChatExporter)轻松将AI对话导出为标准Markdown格式支持ChatGPT,Grok和Gemini平台相关代码已开源至Github欢迎Star✨功能特点多平台支持:同时支持ChatGPT,Grok和Gemini三大AI平台完整内容保留:精确导出所有对话内容,包括代码块、数学公式、链接和格式化文本标准Markdown格式:输出符合标准的Markdown格式,确保最
- 矩阵的行列式和逆矩阵的行列式的关系
音程
数学矩阵线性代数
矩阵的行列式和它的逆矩阵的行列式之间有明确的数学关系。我们来详细解释这个关系。✅前提条件:要讨论逆矩阵的行列式,首先必须满足矩阵是可逆的(即:非奇异矩阵),也就是说:矩阵AAA是一个方阵(行数等于列数)且其行列式det(A)≠0\det(A)\neq0det(A)=0核心公式:设AAA是一个n×nn\timesnn×n的可逆矩阵,则其逆矩阵A−1A^{-1}A−1存在,并且满足以下关系:det
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- 非关系型数据库在数据库领域的崛起与应用
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库nosql网络ai
非关系型数据库在数据库领域的崛起与应用关键词:非关系型数据库、关系型数据库、崛起原因、应用场景、数据库领域摘要:本文主要探讨了非关系型数据库在数据库领域的崛起与应用。首先介绍了非关系型数据库的背景,包括目的、预期读者等内容。接着详细解释了非关系型数据库、关系型数据库等核心概念,并阐述了它们之间的关系。然后深入讲解了非关系型数据库的核心算法原理、数学模型和公式。通过项目实战展示了非关系型数据库的实际
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- 具身智能基础
frostmelody
人工智能
1.MuJoCo:高保真物理仿真的核心引擎技术本质定义:MuJoCo(Multi-JointDynamicswithContact)是由EmoTodorov开发的物理仿真引擎,专注于多关节系统接触动力学的高效计算。核心突破:约束动力学模型:采用约束优化(而非传统弹簧阻尼模型)模拟物体接触,避免穿透和数值不稳定(公式:min12q˙TMq˙+q˙Tf\text{min}\frac{1}{2}\dot
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- 3天狂揽2.8k星!manus 开源替代又又又又又又又来啦! 逆天AI助理Suna开源!免费替你搞定一切,效率飙升!
梦玄海
人工智能开源编辑器stablediffusiongolang
今天给大家挖来一个超级宝藏!你是不是也曾幻想过拥有一个钢铁侠的贾维斯那样,能帮你处理各种繁琐任务的AI伙伴?能在你忙得焦头烂额时,优雅地帮你完成研究、分析数据、甚至处理各种日常挑战?别再幻想了!今天的主角——Suna,就是这样一个为你而生的开源通用AI智能体!它不仅仅是一个聊天机器人,更是一个能代表你行动、解决现实世界问题的得力干(工)助(具)手(人)!在GitHub上,光发布几天的Suna项目已
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 经济学神图:洛伦兹曲线
大千AI助手
人工智能Python#OTHER决策树人工智能DecisionTree算法洛伦兹曲线基尼
洛伦兹曲线(LorenzCurve)是衡量社会收入或财富分配不平等程度的经典可视化工具,由美国统计学家马克斯·洛伦兹(MaxOttoLorenz)于1905年提出。它不仅是理解基尼系数的核心基础,也是经济学、社会学中分析资源分配公平性的关键图表。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文
- 【excel使用小知识:绝对定位和相对定位】
在Excel中,绝对定位和相对定位是用于定义单元格引用方式的两种重要机制,直接影响公式在复制或填充时的行为。以下是详细解释和对比:一、相对定位(RelativeReference)定义:相对定位是Excel的默认引用方式,公式中的单元格地址会随着公式复制或填充的位置变化而自动调整。示例:在单元格A1中输入公式:=B1+C1将公式向下填充到A2时,公式会自动变为:=B2+C2将公式向右填充到B1时,
- 三光吊舱激光测距模块技术解析!
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、激光测距模块运行方式1.脉冲式测距(直接ToF)原理:通过发射激光脉冲并计算其从发射到反射返回的时间差(Δt),利用公式距离=(光速×Δt)/2计算目标距离。适用场景:适用于远距离(如1~3km),但精度受大气衰减和噪声影响较大。典型参数:测程达3km,精度±2m(如SH150S1吊舱)。2.相位式测距(间接ToF)原理:对激光束进行幅度调制,通过检测发射波与反射波的相位差计算距离,精度可达毫
- Word 中批量转换 LaTeX 公式为标准数学格式的终极方法(附宏设置教程)
小灰兔的小白兔
wordc#开发语言
在学术写作中,我们常常需要将LaTeX格式的公式插入到Word文档中。但如果你有一大段公式使用$...$或LaTeX命令,手动转换无疑非常耗时。本文将介绍一种“一键转换所有LaTeX公式为Word数学公式”的方法,只需设置一次宏,后续即可像“格式刷”一样使用!原理简介MicrosoftWord实际上内置了对LaTeX的识别能力,但需要配合“公式编辑框”使用。借助宏(Macro)功能,我们可以批量触
- 《三生原理》如何优化注意力机制?
AI辅助创作:《三生原理》通过融合《周易》哲学的数理模型,对注意力机制进行了多维度优化,主要体现在动态计算重构、位置编码革新与训练效率提升三方面,具体路径如下:一、动态筛网替代传统注意力计算三级筛网分层过滤初级筛网:基于素数参数化公式(p=3(2n+1)+2(2n+m+1))预判无效特征交互,压缩注意力计算范围,减少多头冗余计算45%。中级判据:引入五行属性权重动态分配机制,依据模
- 核密度估计KDE和概率密度函数PDF(深入浅出)
赵孝正
深度学习数学基础pdfKDE
目录1.和密度估计(KDE)核密度估计的基本原理核密度估计的公式核密度估计的应用Python中的KDE实现示例代码结果解释解释结果总结2.概率密度函数(PDF)概率密度函数(PDF)是怎么工作的:用图画来解释解释这个图:问题解答:总结3.核密度估计(KDE)和概率密度函数(PDF)之间的关系故事开始:第一种方法:概率密度函数(PDF)第二种方法:核密度估计(KDE)总结一下:问题解答:1.和密度估
- 层归一化Layer Normalization
Summer_Anny
python人工智能
层归一化层归一化(LayerNormalization)是一种神经网络中常用的归一化技朧,用于在训练过程中加速收敛、稳定训练,并提高模型的泛化能力。与批归一化(BatchNormalization)类似,层归一化是一种归一化技朧,但是它是对每个样本的特征进行归一化,而不是对整个批次的特征进行归一化。层归一化的计算公式如下:[LayerNorm(x)=γx−μσ2+ϵ+β][\text{LayerN
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- pnpm命令
文章目录1.卸载指定包2.安装指定版本包3.清除pnpm的缓存4.其他相关操作5.版本选择语法6.工作空间示例(monorepo)7.注意事项在pnpm中管理包的特定版本安装和卸载操作如下:1.卸载指定包#卸载单个包pnpmremove#示例:卸载lodashpnpmremovelodash#卸载多个包pnpmremove#全局卸载pnpmremove--global2.安装指定版本包#精确安装特
- 【HarmonyOS next】ArkUI-X休闲娱乐搞笑日历【基础】
harmonyos-next
引言在跨平台应用开发中,网络图片在不同设备上的适配展示是常见挑战。本文将基于HarmonyOSnext的ArkUI-X框架,通过一个休闲娱乐日历应用,展示如何实现网络图片在华为和iOS设备上的完美适配。应用每日通过API获取搞笑日历图片,并在不同设备上智能适配显示。开发环境操作系统:macOS开发工具:DevEcoStudio5.0.4测试设备:华为Nova12Ultra、iPhone13Pro开
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_