原创不易,转载请务必注明,原创地址,谢谢配合!
http://qindongliang.iteye.com/blog/2164583
Lucene内置很多的分词器工具包,几乎涵盖了全球所有的国家和地区,最近散仙,在搞多语言分词的一个处理,主要国家有西班牙,葡萄牙,德语,法语,意大利,其实这些语系都与英语非常类似,都是以空格为分割的语种。
那么首先,探讨下分词器的词形还原和词干提取的对搜索的意义?在这之前,先看下两者的概念:
词形还原(lemmatization),是把一个任何形式的语言词汇还原为一般形式(能表达完整语义),而词干提取
(stemming)是抽取词的词干或词根形式(不一定能够表达完整语义)。词形还原和词干提取是词形规范化的两类
重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别
详细介绍,请参考这篇文章
在电商搜索里,词干的抽取,和单复数的还原比较重要(这里主要针对名词来讲),因为这有关搜索的查准率,和查全率的命中,如果我们的分词器没有对这些词做过处理,会造成什么影响呢?那么请看如下的一个例子?
句子: i have two cats
分词器如果什么都没有做:
这时候我们搜cat,就会无命中结果,而必须搜cats才能命中到一条数据,而事实上cat和cats是同一个东西,只不过单词的形式不一样,这样以来,如果不做处理,我们的查全率和查全率都会下降,会涉及影响到我们的搜索体验,所以stemming这一步,在某些场合的分词中至关重要。
本篇,散仙,会参考源码分析一下,关于德语分词中中如何做的词干提取,先看下德语的分词声明:
List<String> list=new ArrayList<String>();
list.add("player");//这里面的词,不会被做词干抽取,词形还原
CharArraySet ar=new CharArraySet(Version.LUCENE_43,list , true);
//分词器的第二个参数是禁用词参数,第三个参数是排除不做词形转换,或单复数的词
GermanAnalyzer sa=new GermanAnalyzer(Version.LUCENE_43,null,ar);
接着,我们具体看下,在德语的分词器中,都经过了哪几部分的过滤处理:
protected TokenStreamComponents createComponents(String fieldName,
Reader reader) {
//标准分词器过滤
final Tokenizer source = new StandardTokenizer(matchVersion, reader);
TokenStream result = new StandardFilter(matchVersion, source);
//转小写过滤
result = new LowerCaseFilter(matchVersion, result);
//禁用词过滤
result = new StopFilter( matchVersion, result, stopwords);
//排除词过滤
result = new SetKeywordMarkerFilter(result, exclusionSet);
if (matchVersion.onOrAfter(Version.LUCENE_36)) {
//在lucene3.6以后的版本,采用如下filter过滤
//规格化,将德语中的特殊字符,映射成英语
result = new GermanNormalizationFilter(result);
//stem词干抽取,词性还原
result = new GermanLightStemFilter(result);
} else if (matchVersion.onOrAfter(Version.LUCENE_31)) {
//在lucene3.1至3.6的版本中,采用SnowballFilter处理
result = new SnowballFilter(result, new German2Stemmer());
} else {
//在lucene3.1之前的采用兼容的GermanStemFilter处理
result = new GermanStemFilter(result);
}
return new TokenStreamComponents(source, result);
}
OK,我们从源码中得知,在Lucene4.x中对德语的分词也做了向前和向后兼容,现在我们主要关注在lucene4.x之后的版本如何的词形转换,下面分别看下
result = new GermanNormalizationFilter(result);
result = new GermanLightStemFilter(result);
这两个类的功能:
package org.apache.lucene.analysis.de;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.util.StemmerUtil;
/**
* Normalizes German characters according to the heuristics
* of the <a href="http://snowball.tartarus.org/algorithms/german2/stemmer.html">
* German2 snowball algorithm</a>.
* It allows for the fact that ä, ö and ü are sometimes written as ae, oe and ue.
*
* [list]
* <li> 'ß' is replaced by 'ss'
* <li> 'ä', 'ö', 'ü' are replaced by 'a', 'o', 'u', respectively.
* <li> 'ae' and 'oe' are replaced by 'a', and 'o', respectively.
* <li> 'ue' is replaced by 'u', when not following a vowel or q.
* [/list]
* <p>
* This is useful if you want this normalization without using
* the German2 stemmer, or perhaps no stemming at all.
*上面的解释说得很清楚,主要是对德文的一些特殊字母,转换成对应的英文处理
*
*/
public final class GermanNormalizationFilter extends TokenFilter {
// FSM with 3 states:
private static final int N = 0; /* ordinary state */
private static final int V = 1; /* stops 'u' from entering umlaut state */
private static final int U = 2; /* umlaut state, allows e-deletion */
private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);
public GermanNormalizationFilter(TokenStream input) {
super(input);
}
@Override
public boolean incrementToken() throws IOException {
if (input.incrementToken()) {
int state = N;
char buffer[] = termAtt.buffer();
int length = termAtt.length();
for (int i = 0; i < length; i++) {
final char c = buffer[i];
switch(c) {
case 'a':
case 'o':
state = U;
break;
case 'u':
state = (state == N) ? U : V;
break;
case 'e':
if (state == U)
length = StemmerUtil.delete(buffer, i--, length);
state = V;
break;
case 'i':
case 'q':
case 'y':
state = V;
break;
case 'ä':
buffer[i] = 'a';
state = V;
break;
case 'ö':
buffer[i] = 'o';
state = V;
break;
case 'ü':
buffer[i] = 'u';
state = V;
break;
case 'ß':
buffer[i++] = 's';
buffer = termAtt.resizeBuffer(1+length);
if (i < length)
System.arraycopy(buffer, i, buffer, i+1, (length-i));
buffer[i] = 's';
length++;
state = N;
break;
default:
state = N;
}
}
termAtt.setLength(length);
return true;
} else {
return false;
}
}
}
package org.apache.lucene.analysis.de;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.miscellaneous.SetKeywordMarkerFilter;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.KeywordAttribute;
/**
* A {@link TokenFilter} that applies {@link GermanLightStemmer} to stem German
* words.
* <p>
* To prevent terms from being stemmed use an instance of
* {@link SetKeywordMarkerFilter} or a custom {@link TokenFilter} that sets
* the {@link KeywordAttribute} before this {@link TokenStream}.
*
*
*
*这个类,主要做Stemmer(词干提取),而我们主要关注
*GermanLightStemmer这个类的作用
*
*
*/
public final class GermanLightStemFilter extends TokenFilter {
private final GermanLightStemmer stemmer = new GermanLightStemmer();
private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);
private final KeywordAttribute keywordAttr = addAttribute(KeywordAttribute.class);
public GermanLightStemFilter(TokenStream input) {
super(input);
}
@Override
public boolean incrementToken() throws IOException {
if (input.incrementToken()) {
if (!keywordAttr.isKeyword()) {
final int newlen = stemmer.stem(termAtt.buffer(), termAtt.length());
termAtt.setLength(newlen);
}
return true;
} else {
return false;
}
}
}
下面看下,在GermanLightStemmer中,如何做的词干提取:源码如下:
package org.apache.lucene.analysis.de;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This algorithm is updated based on code located at:
* http://members.unine.ch/jacques.savoy/clef/
*
* Full copyright for that code follows:
*/
/*
* Copyright (c) 2005, Jacques Savoy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer. Redistributions in binary
* form must reproduce the above copyright notice, this list of conditions and
* the following disclaimer in the documentation and/or other materials
* provided with the distribution. Neither the name of the author nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Light Stemmer for German.
* <p>
* This stemmer implements the "UniNE" algorithm in:
* <i>Light Stemming Approaches for the French, Portuguese, German and Hungarian Languages</i>
* Jacques Savoy
*/
public class GermanLightStemmer {
//处理特殊字符映射
public int stem(char s[], int len) {
for (int i = 0; i < len; i++)
switch(s[i]) {
case 'ä':
case 'à':
case 'á':
case 'â': s[i] = 'a'; break;
case 'ö':
case 'ò':
case 'ó':
case 'ô': s[i] = 'o'; break;
case 'ï':
case 'ì':
case 'í':
case 'î': s[i] = 'i'; break;
case 'ü':
case 'ù':
case 'ú':
case 'û': s[i] = 'u'; break;
}
len = step1(s, len);
return step2(s, len);
}
private boolean stEnding(char ch) {
switch(ch) {
case 'b':
case 'd':
case 'f':
case 'g':
case 'h':
case 'k':
case 'l':
case 'm':
case 'n':
case 't': return true;
default: return false;
}
}
//处理基于以下规则的词干抽取和缩减
private int step1(char s[], int len) {
if (len > 5 && s[len-3] == 'e' && s[len-2] == 'r' && s[len-1] == 'n')
return len - 3;
if (len > 4 && s[len-2] == 'e')
switch(s[len-1]) {
case 'm':
case 'n':
case 'r':
case 's': return len - 2;
}
if (len > 3 && s[len-1] == 'e')
return len - 1;
if (len > 3 && s[len-1] == 's' && stEnding(s[len-2]))
return len - 1;
return len;
}
//处理基于以下规则est,er,en等的词干抽取和缩减
private int step2(char s[], int len) {
if (len > 5 && s[len-3] == 'e' && s[len-2] == 's' && s[len-1] == 't')
return len - 3;
if (len > 4 && s[len-2] == 'e' && (s[len-1] == 'r' || s[len-1] == 'n'))
return len - 2;
if (len > 4 && s[len-2] == 's' && s[len-1] == 't' && stEnding(s[len-3]))
return len - 2;
return len;
}
}
具体的分析结果如下:
搜索技术交流群:324714439
大数据hadoop交流群:376932160
0,将一些德语特殊字符,替换成对应的英文表示
1,将所有词干元音还原 a ,o,i,u
ste(2)(按先后顺序,符合以下任意一项,就完成一次校验(return))
2,单词长度大于5的词,以ern结尾的,直接去掉
3,单词长度大于4的词,以em,en,es,er结尾的,直接去掉
4,单词长度大于3的词,以e结尾的直接去掉
5,单词长度大于3的词,以bs,ds,fs,gs,hs,ks,ls,ms,ns,ts结尾的,直接去掉s
step(3)(按先后顺序,符合以下任意一项,就完成一次校验(return))
6,单词长度大于5的词,以est结尾的,直接去掉
7,单词长度大于4的词,以er或en结尾的直接去掉
8,单词长度大于4的词,bst,dst,fst,gst,hst,kst,lst,mst,nst,tst,直接去掉后两位字母st
最后,结合网上资料分析,基于er,en,e,s结尾的是做单复数转换的,其他的几条规则主要是对非名词的单词,做词干抽取。
原创不易,转载请务必注明,原创地址,谢谢配合!
http://qindongliang.iteye.com/blog/2164583