- YOLOv11改进 | 检测头改进篇 | 利用ASFF改进YOLOv11检测头,自适应空间特征融合模块,在所有的目标检测上均有大幅度的涨点效果
Ai缝合怪YOLO涨点改进
YOLO目标检测计算机视觉深度学习YOLOv11YOLOv8YOLOv10
YOLOv8v10v11专栏限时199元订阅链接:限时199元去b站关注:AI缝合怪订阅YOLOv8v10v11创新改进高效涨点+持续改进500多篇(订阅的小伙伴,终身免费享有后续YOLOv12或是其他版本的改进专栏)目录一、ASFF模块介绍ASFF网络结构图:ASFF的创新点主要包括:作用原理优势二、核心代码三、手把手教你添加v11Detect_ASFFHead检测头模块1.首先在ultraly
- 考证好像真的能改变一个人‼️
小猫椰椰
探潜数据分析数据分析职场和发展大数据
考完这些证书,我真的感觉自己变样了。BDA初级数据分析师、BDA中级数据分析师、CPBA商业分析师3个方向,文科生的我,原本没有听过这些证书,但进入职场才知道,多一项技能,多一份优势刚毕业的时候,我考了BDA初级数据分析师,那个时候就尝到了甜头,不仅让简历更漂亮了,自己也掌握了数据分析技能后来的几年,我又陆陆续续考了BDA中级数据分析师和CPBA商业分析师3个方向的证书,看着这些证真的有满满的成就
- sql注入总结(时间盲注,布尔盲注,无列名注入,regexp盲注,order by注入,二次注入,update注入,报错注入)
尘佑不尘
sql数据库web安全网络安全笔记学习
一、update注入query="updatemembersetsex=′query="updatemembersetsex='query="updatemembersetsex=′sex’,phonenum=‘phonenum′,address=′phonenum',address='phonenum′,address=′add,email=‘emailwhereusername=’$ueser
- 每日Attention学习24——Strip Convolution Block
xiongxyowo
划水
模块出处[TIP21][link]CoANet:ConnectivityAttentionNetworkforRoadExtractionFromSatelliteImagery模块名称StripConvolutionBlock(SCB)模块作用多方向条形特征提取模块结构模块特点类PSP设计,采用四个并行分支提取不同维度的信息相比于经典的横向/纵向条形卷积,引入了两种斜方向的卷积来更好的学习斜向线
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- ELMo ,LM:一串词序列的概率分布probability distribution over sequences of words
强化学习曾小健
NLP自然语言处理#预训练语言模型
语言模型(LanguageModel),语言模型简单来说就是一串词序列的概率分布。Languagemodelisaprobabilitydistributionoversequencesofwords.GPT与ELMo当成特征的做法不同,OpenAIGPT不需要再重新对任务构建新的模型结构,而是直接在transformer这个语言模型上的最后一层接上softmax作为任务输出层,然后再对这整个模型
- DCMNet一种用于目标检测的轻量级骨干结构模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法目标检测
模型背景在深度学习技术快速发展的背景下,目标检测领域取得了显著进展。早期的手工特征提取方法如Viola-Jones和HOG逐渐被卷积神经网络(CNN)取代,其中AlexNet在2012年的ILSVRC比赛中表现突出,推动了CNN在计算机视觉中的广泛应用。然而,这些早期模型在精度和效率方面仍存在不足,尤其是在处理复杂场景和小目标时表现不佳。这为DCMNet等新型轻量化目标检测模型的出现提供了契机,旨
- 远程办公2.0:如何通过技术实现全球化团队协作?
远程办公2.0时代:从“被迫适应”到“主动进化”的未来工作革命——前沿技术与趋势预测全解析引言:一场不可逆的全球工作革命2020年的一场疫情,让全球职场人第一次大规模体验了远程办公的“生存模式”,而五年后的今天,远程办公已从“权宜之计”进化为“战略选择”。根据《2022年未来办公调研报告》,到2025年,全球53%的企业将永久开放远程办公选项。与此同时,技术的爆发式迭代正推动远程办公迈入2.0时代
- 清华大学:DeepSeek+DeepResearch 让科研像聊天一样简单(86 页 PDF)
伟贤AI之路
AI技术pdf
第一弹:《DeepSeek:从入门到精通(100页PDF)》第二弹:《DeepSeek如何赋能职场应用?从提示语技巧到多场景应用》第三弹:《普通人如何抓住DeepSeek红利?》现在是《DeepSeek+DeepResearch让科研像聊天一样简单》PDF阅读地址:https://tcnsnwj3d31i.feishu.cn/wiki/CkbJw0pm5i5uAEkiijrcGGHrnGhPDF中
- PCA主成分分析降维算法及其可视化(附完整版代码)
Jason_Orton
算法机器学习数据挖掘人工智能matlab
一.PCA的介绍PCA(PrincipalComponentAnalysis)是一种数据降维技术,旨在将多维指标转换为少数几个综合指标。在统计学中,PCA是简化数据集的一种方法,通过线性变换将数据映射到新的坐标系中。在新的坐标系中,第一主成分捕获数据投影的最大方差,第二主成分捕获第二大方差,依此类推。主成分分析常用于减少数据集的维度,同时保留对方差贡献最大的特征。这是通过保留低阶主成分、忽略高阶主
- 使用mybatisPlus的queryWrapper做左联接,内联接
R-sz
mybatisjavamysql
在service层生成使用mybatisplus的querywapper的Java代码SELECTbs_user.id,bs_user.mobile,bs_user.username,bs_user.password,bs_user.enable_state,ss_user_social_security.user_id,ss_user_social_security.enterprises_pa
- 自编码器(Autoencoders)
路野yue
机器学习人工智能深度学习
自编码器(Autoencoders):自编码器由编码器和解码器组成,编码器将输入数据压缩为低维表示,解码器将其还原为原始数据。通过训练,自编码器能够学习数据的有效表示,常用于降维和特征提取。相比于独立模型,它的输入输出更灵活,且可以在输入完成后在完成解码。1.基本结构自编码器由两部分组成:编码器(Encoder):将输入数据压缩为低维表示(编码)。解码器(Decoder):从编码中重建原始数据。2
- VIT(Vision Transformer)【超详细 pytorch实现
周玄九
计算机视觉transformer深度学习人工智能
CNN的局限性:传统的CNN通过局部卷积核提取特征,虽然可以通过堆叠多层卷积扩大感受野,但仍然依赖于局部信息的逐步聚合,难以直接建模全局依赖关系。ViT的优势:ViT使用自注意力机制(Self-Attention),能够直接捕捉图像中所有patch(图像块)之间的全局关系。这种全局建模能力在处理需要长距离依赖的任务(如图像分类、目标检测)时表现更好。全流程图像预处理+分块图像尺寸标准化,如(224
- 你好,我是冴羽,我写了一套《前端大佬成长之路》
你好,我是冴羽。这么正式的开头说明我有了一个大动作。是的,我创建了自己的知识星球:“冴羽·前端大佬成长之路”。重点一:新的一年,我会在知识星球更新一套“前端大佬成长之路”的课程。包含目标规划篇、学习方法篇、前端学习篇、个人管理篇、职场发展篇、面试技巧篇、健康养生篇共7大篇章、40节文章。总结了我近十年的工作生活经验,让大家少走一些弯路,节省一些时间。重点二:但是帮助你全面成长,一套课程是不够的,必
- 机器学习——无监督学习(k-means算法)
张起灵ovo
机器学习入门机器学习算法学习
1、K-Means聚类算法K表示超参数个数,如分成几个类别,K值就取多少。若无需求,可使用网格搜索找到最佳的K。步骤:1、随机设置K个特征空间内的点作为初始聚类中心;2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记种类;3、接着对标记的聚类中心之后,重新计算出每个聚类的中心点(平均值);4、如果计算得出的新中心点与原中心点一样,那么结束,否则执行第二步。means表
- 如果你干了1年多前端,接下来的路该怎么走?
前端后端程序员
我知道在很多中大型公司,其实有好多领导前辈、以及师傅会给那些校招生,以及应届生规划一定的学习成长路线。有些皮于表面,有些醍醐灌顶。其实如果职场上有那么一个领路人,个人的成长是飞速的。我入职了一家新单位,这家单位的没有太多规范,没有太多的组件封装积累,还会考核每周的代码量,我发现有些阶段代码量(测试阶段、需求阶段等)不够的时候大家都是往项目中塞没用的代码,还有些同学会复制公共组件的代码进自己的模块充
- 说话人识别系统原理
醉心编码
人工智能基础编程基础技术类人工智能说话人识别语音识别
在当今数字化和智能化飞速发展的时代,说话人识别系统作为一项关键的生物识别技术,正逐渐融入我们生活的方方面面。简单来说,说话人识别系统就像是一位“语音侦探”,能够通过分析语音中的独特特征,精准地判断出说话者的身份。它与指纹识别、人脸识别等技术一样,都属于生物识别技术的范畴,但有着独特的优势——仅通过声音即可实现身份识别,无需额外的物理接触或视觉捕捉。与语音识别不同,语音识别关注的是语音内容的转写,比
- 自动驾驶之BEVDet
maxruan
BEV自动驾驶自动驾驶人工智能机器学习
BEVDet主要分为4个模块:1、图像视图编码器(Image-viewEncoder):就是一个图像特征提取的网络,由主干网络backbone+颈部网络neck构成。经典主干网络比如resnet,SwinTransformer等。neck有==FPN==,PAFPN等。例如输入环视图像,记作Tensor([bs,N,3,H,W]),提取多尺度特征;其中bs=batchsize,N=环视图像的个数,
- AI取代的不是人类,而是不会使用AI的人
xiaocang668888
人工智能
面对人工智能对职场的深度渗透,职场人需从技能升级、能力重构、思维转型三个维度构建核心竞争力。以下是具体策略:一、技能升级:掌握AI协同工具AI工具链学习掌握主流AI工具(如Claude、Midjourney)的操作逻辑,将重复性工作(数据分析、文档处理)交由AI完成,释放时间用于高阶任务。例如,市场营销人员用AI生成广告初稿后,再注入人性化洞察。技术门槛公式:CAI=任务重复度工具掌握度×业务理解
- 【Transforme-SVM多特征分类预测】基于Transforme-支持向量机多特征分类预测。(可做分类/回归/时序预测,具体私聊),可直接运行。matlab代码,2023b及其以上。1.运行
智能算法及其模型预测
支持向量机分类回归
【Transforme-SVM多特征分类预测】基于Transforme-支持向量机多特征分类预测。(可做分类/回归/时序预测,具体私聊),可直接运行。matlab代码,2023b及其以上。1.运行环境要求MATLAB版本为2023b,多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。2.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。3.多边形面积PA
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- 在Mapper.xml中使用mybatisplus的QueryWrapper
松岛的枫叶
javaspringbootmybatis
在xml中,要根据id批量查询,需要使用foreach循环collection,foreach的主要用在构建in条件中,它可以在SQL语句中进行迭代一个集合。在mybatisPlus中,简便的做法:可以将queryWrapper作为参数传递到Mapper中第一步:构建QueryWrapper对象,实质上通过in已经构建出了查询符合id的条件语句QueryWrapperqueryWrapper=ne
- 模式识别课程设计:人脸识别 背景与问题引入之问题描述
XLYcmy
模式识别网络安全人工智能课程设计模式识别人脸识别PCALLM
1.2问题描述通过之前的背景介绍可以知道人脸识别技术作为计算机视觉和模式识别领域的重要研究方向,已广泛应用于身份验证、安全监控、智能家居等多个领域。随着计算机硬件性能的不断提升和深度学习技术的成熟,人脸识别的精度和应用场景不断扩展。本研究设计了一种基于主成分分析(PCA)[7]和K-L变换的人脸识别系统,利用ORL人脸数据库作为数据源,对输入的人脸图像进行识别,并输出与其特征最相似的人脸。该系统的
- python曲线回归小案例教程
jackispy
python回归开发语言
一、曲线回归的定义曲线回归是一种统计方法,用于建立自变量(独立变量)和因变量(依赖变量)之间的非线性关系模型。与线性回归不同,线性回归假设自变量和因变量之间的关系是线性的,即可以通过一条直线来描述数据点的趋势;而曲线回归则允许这种关系是非线性的,可能表现为曲线、抛物线、指数、对数或其他复杂的数学形式。其主要特征如下:非线性关系:曲线回归适用于那些不能用直线来充分描述的数据关系。它允许模型以曲线形式
- 【机器学习与数据挖掘实战】案例15:基于LDA模型的电商产品评论数据情感分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘人工智能LDA主题模型情感分析文本分析python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统
路人与大师
语言模型人工智能自然语言处理
一、系统架构详解1.输入层a.用户行为数据数据来源:网站浏览历史、购物车内容、购买记录、收藏夹、搜索记录等。处理方式:数据清洗、去重、时间序列分析,提取用户的长期和短期兴趣。特征工程:行为序列:用户行为的时间顺序,如最近浏览的商品类别。频率与时长:浏览某类商品的频率和时长。转化率:从浏览到购买的转化情况。b.商品数据数据来源:商品数据库,包括价格、品牌、类别、库存、评价、销量等。处理方式:标准化处
- qt mysql 执行sql_Qt数据库- 执行SQL语句
weixin_39724266
qtmysql执行sql
QtVersion5.14.0QSqlQuery类提供执行SQL语句的接口,并且能够访问执行结果数据集。执行一次查询想要执行SQL语句,只需要创建一个QSqlQuery对象,然后调用它的exec函数,如下代码。(这里构造QSqlQuery对象时没有指定数据库链接名称)QSqlQueryquery;boolflag=query.exec("SELECTname,salaryFROMemployeeW
- Redis面试题----MySQL 里有 2000w 数据,Redis 中只存 20w 的数据,如何保证 Redis 中的数据都是热点数据?
指尖下的技术
Java面试题redismysql数据库
要保证Redis中存储的20w数据都是热点数据,可以从数据筛选和数据淘汰两个大的方面来考虑,以下是详细的实现思路和方法:数据筛选1.基于业务规则分析业务场景:不同的业务场景有不同的热点数据特征。例如,在电商系统中,热门商品、促销商品往往是热点数据;在新闻资讯系统中,最新发布、阅读量高的新闻是热点数据。根据业务的特点,确定热点数据的规则。定期同步:编写脚本或程序,根据业务规则从MySQL中筛选出符合
- QT5框架中对sqlquery.exec(“SQL语句“)的返回值存在误解
苏帕贝吉塔
qtc语言sql
sqlquery.exec("............")的返回值为True或者Flase,但如果sql查询的结果集为空,系统会认为sql查询成功,返回True。只有sql语句存在语法错误或者数据库连接失效后才会返回Flase。在具体的QT项目中,我的错误代码如下:if(!sqlquery.exec(Str)){QMeessageBox::critial(this,"提示","查询失败!");}e
- KNN 算法性能跃升秘籍:优化实战,打造高效分类利器!
清水白石008
开发语言学习笔记人工智能算法分类机器学习
KNN算法性能跃升秘籍:优化实战,打造高效分类利器!今天,我想和大家深入探讨一种经典而实用的机器学习算法——K近邻(K-NearestNeighbors,KNN)。KNN算法以其原理简单、易于实现、无需显式训练等特点,在模式识别、分类、回归等领域得到了广泛应用。然而,正如任何算法一样,基础的KNN算法也存在着性能瓶颈,尤其是在处理大规模数据集和高维度特征时,其计算效率和预测精度都可能受到挑战。你是
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出