- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- TypeScript语言的计算机视觉
苏墨瀚
包罗万象golang开发语言后端
使用TypeScript进行计算机视觉:一个现代化的探索引言随着人工智能和机器学习的快速发展,计算机视觉(ComputerVision)成为了一个极具活力的研究领域。计算机视觉旨在使计算机能够“看”和“理解”数字图像或视频中的内容。近年来,TypeScript作为一种现代化的编程语言,因其类型安全和更好的开发体验,逐渐在前端和后端开发中得到了广泛应用。本文将探讨如何使用TypeScript进行计算
- DeepSeek混合专家架构赋能智能创作
智能计算研究中心
其他
内容概要在人工智能技术加速迭代的当下,DeepSeek混合专家架构(MixtureofExperts)通过670亿参数的动态路由机制,实现了多模态处理的范式突破。该架构将视觉语言理解、多语言语义解析与深度学习算法深度融合,构建出覆盖文本生成、代码编写、学术研究等场景的立体化能力矩阵。其核心优势体现在三个维度:精准化内容生产——通过智能选题、文献综述自动生成等功能,将学术论文写作效率提升40%以上;
- 【AI论文】ReCamMaster:基于单视频的相机控制式生成渲染
东临碣石82
人工智能数码相机计算机视觉
摘要:相机控制在基于文本或图像条件的视频生成任务中已得到积极研究。然而,尽管改变给定视频的相机轨迹在视频创作领域具有重要意义,但这一领域的研究仍显不足。由于需要保持多帧外观和动态同步的额外约束,这一任务颇具挑战性。为解决这一问题,我们提出了ReCamMaster,这是一个相机控制的生成式视频重渲染框架,能够在新的相机轨迹下重现输入视频中的动态场景。其核心创新在于通过一种简单而强大的视频条件机制,利
- 华纳云:BenchSEE测试工具怎么用?
测试
BenchSEE测试工具的使用方法可以按照以下步骤进行:BenchSEE简介:BenchSEE是中国标准化研究院开发的一款服务器产品能效测试基准软件。它支持多种服务器类型和硬件平台,并兼容主流操作系统。准备工作:确保测试系统包括控制端(可以是PC或服务器,需联网并支持谷歌浏览器)、被测服务器、温度计(可选择模拟模式)、功耗仪(可选择模拟模式)。若要生成可信报告,则必须链接功耗仪和温度计。注意功耗仪
- 数据结构复习笔记5.2:二叉树
SGCGYU_Tan
数据结构笔记数据结构笔记c++
1.二叉树的概念⼆叉树是每个结点最多有两个⼦树的树结构。也就是说⼆叉树不允许存在度⼤于2的树。它有五种最基本的形态:⼆叉树可以是空集。根可以有空的左⼦树或者右⼦树;或者左右⼦树都是空。其中只有左⼦树或者右子树的叫做斜树。为何要重点研究每结点最多只有两个“叉”的树?二叉树的结构最简单,规律性最强;可以证明,所有树都能转为唯一对应的二叉树,不失一般性。普通树(多叉树)若不转化为二叉树,则运算很难实现。
- YOLO11改进-模块-引入频率谱动态聚合模块FSDA 去除噪声
一勺汤
YOLOv11模型改进系列目标检测魔改模块YOLOYOLOv11YOLOv11改进改进
在图像去雾领域,深度学习在白天图像去雾方面成果显著,但夜间雾图研究较少。夜间雾图面临诸多挑战,其中包括雾、辉光和噪声因多个低强度有源彩色光源而具有复杂特性,以及模拟与真实数据的域差异导致的亮度问题。为解决这些,我们使用FSDA模块,处理频率不一致特性。FSDA先对频谱信息聚合,再计算通道权重并应用,最后映射回空间域,以此优化频谱信息,使模型更好处理复杂干扰。本文将其与YOLOv11相结合,增强YO
- 科技资讯杂志科技资讯编辑部科技资讯杂志社2025年第2期目录
QQ296078736
人工智能
学思践悟二十大党的二十大背景下以人民为中心发展教育的路径探究宋靖玮;韩冰;1-3党的二十大精神引领下药学课程群思政育人探索与实践——以应用型本科生物制药专业为例张志国;张媛婷;刘畅;闫立地;岳华;徐晶雪;秦姝冕;王雨欣;4-8党的二十大背景下“资源再生利用”思政教学的设计研究孟娟;秦恒飞;罗京;蒋杰;程龙;9-11+15践行党的二十大精神探索机器人工程专业创新型人才培养新模式郭霆;安少军;张明慧;
- 基于协同过滤推荐算法的景点票务数据系统(python-计算机毕设)
计算机程序设计(接毕设)
推荐算法机器学习毕业设计python人工智能
摘要IABSTRACTII第1章引言1研究背景及意义1研究背景1研究意义1国内外研究现状2智慧旅游3旅游大数据3研究内容4本章小结4第2章相关技术概述5基于内容的推荐算法5基于内容的推荐算法原理5基于内容的推荐算法实现5协同过滤推荐算法6协同过滤算法原理6协同过滤算法实现7SpringBoot框架9SpringBoot简介9SpringBoot特性10SpringBoot工作原理10Vue.js框
- ESG证书:AI预测未来十年职场人的黄金入场券
ESG学习圈
pandaspythondjango
当ChatGPT开始撰写ESG报告,当机器学习模型精准预测企业碳排放轨迹,一场由AI驱动的ESG革命正在颠覆传统可持续发展领域。根据彭博新能源财经预测,到2030年全球ESG资产管理规模将突破50万亿美元,而AI技术将成为撬动这个万亿级市场的核心杠杆。一、AI透视下的ESG黄金时代在微软开发的AI模型ESG-NOW系统中,通过分析全球4300家上市公司近十年的环境数据,成功预测2025年新能源行业
- 巨人学术搜索官网入口,免费参考文献论文及学术搜索引擎
黄豆匿zlib
学习方法
巨人学术搜索自2024年上线以来,迅速成为学术界不可或缺的重要工具,尤其受到研究人员、教师及学生的青睐。这款专注于学术领域的专业搜索引擎,覆盖了自然科学、人文科学、社会科学等多个学科领域,整合了国内外众多主流数据库,包括维普、万方、Elsevier、WebofScience等,为用户提供了期刊论文、学位论文、专利、图书、预印本等多种类型资源的精准检索服务。与普通搜索引擎相比,巨人学术搜索的优势在于
- 固态电池行业深度研究报告:技术变革与市场展望
萧十一郎@
知识科普大数据人工智能
目录一、引言1.1研究背景与目的1.2研究方法与数据来源二、固态电池概述2.1定义与分类2.1.1定义2.1.2分类2.2工作原理2.3发展历程三、固态电池技术优势与挑战3.1技术优势3.1.1高安全性3.1.2高能量密度3.1.3长循环寿命3.2技术挑战3.2.1离子电导率低3.2.2固-固界面问题3.2.3锂枝晶生长3.2.4成本高昂四、固态电池材料体系与技术路线4.1固态电解质材料4.1.1
- 前端面经分享(25/03/19)
CreatorRay
前端面试前端面试
北京一家做协同办公软件出海的公司,技术一面,20k-40k,要求3-5年详细聊了一下上家公司的项目上家公司的项目是不做了吗,离职原因是什么,你觉得公司的这个产品怎么样在做AI类的业务时,作为前端感觉跟常规业务有什么区别详细聊了一下上上家公司的项目细节讲一下项目里用编辑器做了什么事遇到过什么难解决的问题项目里提供的UI自动化的功能是怎么做的聊了一下写博客的事情有没有了解过浏览器底层的东西最近在研究或
- Python的那些事第四十六篇:基于属性的测试库hypothesis研究
暮雨哀尘
Python的那些事python开发语言属性测试库hypothesis执行流程构建
一、引言(一)研究背景随着软件系统复杂性的不断增加,软件测试在确保软件质量方面的重要性愈发凸显。传统测试方法在面对大规模、复杂软件系统时,往往存在测试用例设计不全面、测试执行效率低下等问题。基于属性的测试作为一种新兴的测试方法,通过定义软件系统的属性来指导测试用例的设计与执行,为解决上述问题提供了新的思路。(二)研究意义本研究旨在深入探讨基于属性的测试库的构建与应用,以提高软件测试的效率和质量,降
- DeepSeek+知网研学轻松搞定研究生选题
AI新视界
AI学术学术软件推荐AI工具AI学术学习人工智能学术
选题是研究生学术研究的起点,一个好的选题不仅决定了研究的方向,还直接影响研究的深度和成果。本文将详细介绍如何结合DeepSeek大模型与知网研学,帮助研究生高效完成选题工作。一、选题的重要性与挑战选题的重要性:选题是研究的核心,决定了研究的创新性和可行性。好的选题能够为后续研究提供明确的方向和动力。选题的挑战:如何从海量文献中找到有价值的研究方向?如何判断选题的创新性和研究价值?如何确保选题的可行
- 基于大模型的腮腺多形性腺瘤全周期诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2研究现状与趋势二、大模型预测原理与方法2.1大模型概述2.2数据收集与预处理2.3模型训练与优化三、术前预测与评估3.1肿瘤特征预测3.2风险评估3.3案例分析四、术中方案制定与实施4.1手术方案选择4.2面神经保护策略4.3麻醉方案确定五、术后恢复与并发症预测5.1恢复情况预测5.2并发症风险预测5.3案例分析六、术后护理与康复6.1护理措施6.2康复训练6
- 项目经理面试全攻略:从底层能力拆解到高通过率话术
在竞争激烈的职场中,项目经理岗位的面试堪称“综合能力大考”——既要展现系统化的方法论,又要传递真实的领导力,还要让考官相信你能在复杂环境中推动结果落地。据PMI(美国项目管理协会)调查,82%的优秀项目经理在面试中能清晰呈现“业务价值-团队协作-风险控制”的三角能力模型。本文从能力拆解、面试准备、实战话术三个维度,揭秘项目经理面试通关法则。一、项目经理面试的四大核心能力雷达图面试官通过以下维度评估
- OSPO Summit 2025 正式定档!议题征集同步开启
开源
历经二十余年的发展,OSPO已然成为企业数字化转型的战略枢纽、产学研协同创新的关键桥梁、公共领域开放生态建设的核心引擎。作为这一进程的重要见证者和推动者,OSPOSummit也将在2025年6月12日迎来它的第三次进化。会议信息时间:2025年6月12日地点:北京议题征集,期待你的声音现在,我们面向全球开源社区决策者、企业技术管理者、学术机构研究者及一线开发者,发起议题征集!诚邀您分享OSPO如何
- 友思特新品 | OCT-3D断层扫描成像测量系统OQ StrataScope升级2.0型号!
友思特 机器视觉与光电
机器视觉3dOCT光学相干断层扫描
ProductUpdate!友思特高精度OCT-3D断层扫描成像测量系统推出OQStrataScope升级2.0/R型号!同时,原有的OQStrataScope1.0型号产品将暂时停产。OCT新品简介OQStrataScope2.0是仅用于研究和工业领域应用的光学相干断层扫描系统,可针对高度散射的样品介质增加极深的成像深度。相较于OQLabScope系列,OQStrataScope中心波长可达13
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- 计算机专业毕业设计指南
晴天毕设
课程设计毕业设计开发语言java
毕业设计是计算机专业学生展示综合能力的重要环节,它不仅是对所学知识的总结,也是进入职场或深造前的实战演练。本文将为你提供一份详细的毕业设计指南,帮助你从选题到答辩顺利完成毕业设计。如果有什么问题可以点击文章末尾名片咨询哦一、毕业设计流程概述毕业设计通常包括以下几个阶段:选题需求分析系统设计编码实现测试与优化论文撰写答辩准备每个阶段都有其重要性,下面将逐一详细说明。二、详细步骤1.选题选题是毕业设计
- 含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)
创新优化代码学习
能源matlab前端
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述含光热电站、有机朗肯循环与P2G的综合能源优化调度研究一、技术基础与系统作用二、多技术协同机制三、优化调度模型构建四、典型案例与仿真分析五、未来研究方向结论2运行结果3参考文献4Matlab代码实现1概述光热发电(concentratingsolarp
- 某智慧医养服务平台Uploads存在任意文件上传漏洞(DVB-2025-8968)
Byp0ss403
漏洞复现集合文件上传web安全
免责声明本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。0x01产品介绍广西金中软件集团有限公司前身成立于1999年,隶属于广西电信下的三产公司金中信息产业有限公司,是一家集软件开发、网站建设、网络工程、系统
- 提升敏感力,“工具人”破圈的唯一解!
技能咖
GAI认证生成式人工智能认证人工智能
在当今这个日新月异的数字化时代,个人与组织面临着前所未有的挑战与机遇。随着科技的飞速发展,尤其是生成式人工智能(GenerativeAI)的兴起,职场生态正在发生深刻变革。如何在这场变革中提升敏感力,实现从“工具人”到行业佼佼者的跨越,成为了众多职场人士关注的焦点。本文将探讨提升敏感力的重要性,并引入生成式人工智能认证(GAI认证),为您揭示“工具人”破圈的唯一解。提升敏感力:职场竞争的关键什么是
- Web3身份验证技术对数据保护的影响研究
清 晨
反侦测指纹浏览器社交媒体web3ClonBrowser跨境电商隐私保护
Web3身份验证技术对数据保护的影响研究在这个数字化时代,我们的身份和数据安全比以往任何时候都更加重要。Web3技术以其去中心化和用户主权的核心理念,为个人数据的管理和保护提供了新的视角。本文将探讨Web3身份验证技术如何影响数据保护,并分析其对我们数字生活的影响。Web3身份验证技术简介Web3身份验证技术依托于区块链和先进的加密技术,如非对称加密算法和智能合约,为用户提供了一种全新的身份验证方
- 金三银四快过去一半了,是时候加把劲了
后端go找工作面试
从复旦春招会的15000+岗位争夺战,到AI算法岗年薪百万的“神仙打架”,再到游戏行业20:1的残酷竞争比,今年的金三银四像极了《三体》里的黑暗森林:机会看似遍地,但稍有不慎就成了别人的“背景板”。但现实真的是“投晚了就凉了”吗?数据告诉你真相:智联研究院统计显示,算法工程师、机器人算法工程师等岗位需求同比激增44%,而中小企业的“捡漏窗口”才刚开启。这半个月,我整理了20+场面试实录(含小鹅通、
- Trading星周二Space第三期:理性应对波动,聚焦长期价值
web3区块链比特币
作者:Trading星周二在3月20日美联储利率决议这一关键节点前夕,TechubNews王牌栏目「Trading星周二」第三期以「加密资产仓位攻防战:政策拐点下的BTC/ETH配置法则」为主题,引发行业高度关注。数据显示,本期由主持人茄哥与Balance(Kingdata&Geniidata联合创始人)、A神(RITDLab联合创始人)、交易员Beyond、Cassie(LYSLab研究员)组成
- 加密算法的性能优化与安全性平衡研究
sigen520520
笔记
摘要在数字化信息飞速发展的当下,数据安全至关重要,加密算法作为数据保护的核心手段,其性能与安全性直接关乎信息系统的稳定运行。本文深入剖析常见加密算法,详细分析其性能指标与安全性特点,全面探讨在提升加密速度的同时确保安全的有效方法与实践,旨在为构建高效、安全的加密体系提供理论支撑与实践指导。引言随着互联网的普及和信息技术的广泛应用,数据在传输与存储过程中面临诸多安全威胁,如数据泄露、篡改、伪造等。加
- 从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
人工智能deepseek
从DeepSeek到AI工具箱:Websoft9应用托管平台赋能高校教学与科研人工智能技术的快速发展正在重塑高校的教学与科研生态。从智能教学辅助到跨学科研究,AI工具的应用场景不断扩展,而技术落地的复杂性也带来新的挑战。在这一背景下,如何将大模型能力与多样化AI工具无缝整合,构建安全、易用的科研教学环境,成为高校数字化转型的关键命题。一、高校智能化转型的三大痛点技术门槛高•AI工具部署依赖专业运维
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C