链表之多项式计算相关算法

// polynomial.cpp : Defines the entry point for the console application.
/************************************************************************/
/* 链表之多项式计算相关算法 */
/* 作者:jizhonglee 时间:2012.10.22 */
/************************************************************************/
#include "stdafx.h"
#include <malloc.h>
#include <math.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
//多项式结点
typedef struct polynode
{
float coef;
int power;
} PolyNode ;
//多项式链表表示存储结构: f(x)=an*x^n+an-1*x^n-1+...+a3*x^3+a2*x^2+a1*x^1+a0*x^0
typedef struct polynomial
{
PolyNode info;
polynomial *next;
} PolyNomial ;
 
/************************************************************************/
/* 在多项式上增加一个结点 */
/************************************************************************/
PolyNomial *AddNewItem( PolyNomial * polynomialExpress , polynode item )
{
PolyNomial *p= polynomialExpress ;
if (p== NULL )
{
p=( PolyNomial *)malloc( sizeof ( polynomial ));
p->info= item ;
p->next= NULL ;
return p;
}
else
{
int flag=0; //标记item是否在多项式中存在
for ( PolyNomial *temp=p; temp!= NULL ;temp=temp->next)
{
if (temp->info.power== item .power) //如果指数相同,增item与polynomialExpress相加
{
flag=1;
temp->info.coef+= item .coef;
return polynomialExpress ;
}
}
if (flag==0)
{
PolyNomial *t=( PolyNomial *)malloc( sizeof ( polynomial ));
t->info= item ;
t->next=p;
return t;
}
}
}
/************************************************************************/
/* 两个多项式相加或相减 */
/************************************************************************/
PolyNomial *AddorSubPoly( polynomial first , polynomial second )
{
for ( polynomial *temp=& second ;temp!= NULL ;temp=temp->next)
{
first =*AddNewItem(& first ,temp->info);
}
return & first ;
}
/************************************************************************/
/* 两多项式相乘 */
/************************************************************************/
PolyNomial *MultiplyPoly( polynomial first , polynomial seconds )
{
polynomial *result= NULL ;
for ( polynomial *tf=& first ;tf!= NULL ;tf=tf->next)
{
for ( polynomial *ts=& seconds ;ts!= NULL ;ts=ts->next)
{
PolyNode *node=( PolyNode *)malloc( sizeof ( PolyNode ));
node->power=tf->info.power+ts->info.power;
node->coef=tf->info.coef*ts->info.coef;
result=AddNewItem(result,*node);
}
}
return result;
}
/************************************************************************/
/* 求多项式的微分 */
/************************************************************************/
PolyNomial *DiffPoly( PolyNomial poly )
{
PolyNomial *result= NULL ;
for ( PolyNomial *temp=& poly ;temp!= NULL ;temp=temp->next)
{
PolyNode *node=( PolyNode *)malloc( sizeof ( polynode ));
node->coef=temp->info.power*temp->info.coef;
node->power=temp->info.power-1;
result=AddNewItem(result,*node);
}
return result;
}
/************************************************************************/
/* 求多项式的积分 */
/************************************************************************/
PolyNomial *IntPoly( polynomial poly )
{
polynomial *result= NULL ;
for ( polynomial *temp=& poly ;temp!= NULL ;temp=temp->next)
{
PolyNode *node=( PolyNode *)malloc( sizeof ( PolyNode ));
node->coef=temp->info.coef/(temp->info.power+1);
node->power=temp->info.power+1;
result=AddNewItem(result,*node);
}
return result;
}
/************************************************************************/
/* 计算给定值Value的多项式值f(Value) */
/************************************************************************/
double EvaluatePoly( polynomial poly , double value )
{
double result=0;
for ( polynomial *temp=& poly ;temp!= NULL ;temp=temp->next)
{
result+=temp->info.coef*pow( value ,temp->info.power);
}
return result;
}
/************************************************************************/
/* 计算给定值的定积分的值 */
/************************************************************************/
double DefIntPoly( polynomial poly , double lowwerBound , double UpperBound )
{
double result;
polynomial *intPoly=IntPoly( poly );
result=EvaluatePoly(*intPoly, UpperBound )-EvaluatePoly(*intPoly, lowwerBound );
return result;
}
 
/************************************************************************/
/* 复合函数的值 */
/************************************************************************/
double CompositeFun( polynomial f , polynomial g , double Vaule )
{
double result;
result=EvaluatePoly( f ,EvaluatePoly( g , Vaule ));
return result;
}
/************************************************************************/
/* 创建多项式 */
/************************************************************************/
PolyNomial *CreatePoly()
{
PolyNomial *polynomialExpress= NULL ;
printf( "Input 0 will end the input!\n" );
while (1)
{
printf( "InputPolynode:\n" );
//PolyNode *node=(PolyNode*)malloc(sizeof(PolyNode));
PolyNode node;
std::cin>>node.coef;
std::cin>>node.power;
if (node.coef==0) break ;
else
{
polynomialExpress=AddNewItem(polynomialExpress,node);
}
}
return polynomialExpress;
}
/************************************************************************/
/* 显示多项式 */
/************************************************************************/
void Display( PolyNomial polynomialExpress )
{
printf( "PloymialExpress IS:" );
for ( polynomial *temp=& polynomialExpress ; temp!= NULL ; temp=temp->next)
{
if (temp->info.coef>=0)
{
std::cout<< "+" <<temp->info.coef<< "*x^" <<temp->info.power;
} else
{
std::cout<< "-" <<temp->info.coef<< "*x^" <<temp->info.power;
}
}
std::cout<<endl;
}
int _tmain ( int argc , _TCHAR * argv [])
{
PolyNomial *polynomialExpressA=CreatePoly();
Display(*polynomialExpressA);
//计算f(3)
//std::cout<<EvaluatePoly(*polynomialExpress,3);
//计算复合函数
/*PolyNomial *polynomialExpressB=CreatePoly();
Display(*polynomialExpressB);
std::cout<<CompositeFun(*polynomialExpressA,*polynomialExpressB,3);*/
//微分f(x)'
//Display(*DiffPoly(*polynomialExpressA));
//多项式积分求解
//Display(*IntPoly(*polynomialExpressA));\
//定积分求解
//std::cout<<DefIntPoly(*polynomialExpressA,1,3);
//计算f(x)+g(x)
/*PolyNomial *polynomialExpressB=CreatePoly();
Display(*polynomialExpressB);
PolyNomial *result=AddorSubPoly(*polynomialExpressA,*polynomialExpressB);
PolyNomial *p=result;
Display(*result);*/
//两个多项式相乘
PolyNomial *polynomialExpressB=CreatePoly();
Display(*MultiplyPoly(*polynomialExpressA,*polynomialExpressB));
system( "pause" );
return 0;
}

你可能感兴趣的:(链表之多项式计算相关算法)