- MongoDB 大俗大雅,上来问分片真三俗 -- 4 分什么分
Austindatabases
mongodb数据库
开头还是介绍一下群,如果感兴趣PolarDB,MongoDB,MySQL,PostgreSQL,Redis,OceanBase,SqlServer等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系liuaustin3,(共2710人左右1+2+3+4+5+6+7+8+9)(123456群均已爆满,7群400+,开8群9群)这是MongoDB宣传周的第五篇,这周真漫长,
- 高级测试简历借鉴--深圳0803
V紫玲珑
简历制作测试工程师
大咖简历借鉴程高级工程师♂-高级-13-20k-7年一、基本信息(关键字)1、目前正在找工作+联系方式+邮箱介绍(性别|28岁(1991年X月X日)|现居住深圳|7年工作经验)2、最近工作(2年)+最高学历/学位最近工作(2年)职位:高级软件工程师公司:腾讯科技深圳有限公司行业:计算机软件最高学历/学位专业:信息与计算科学学校:武汉信息科技学院学历/学位:本科(统招3、目前年收入:15万元(包含基
- LLM系列(0):行业大模型落地服务在全业务场景的应用与探索【大模型智能问答、NL2SQL、文档智能分析智能生成、AI智能体决策等】
汀、人工智能
LLM工业级落地实践人工智能自然语言处理promptNL2DSLNL2SQL大模型智能问答
行业大模型落地服务:在全业务场景的应用与探索1.行业大模型落地挑战及应对1.1.挑战一:有限的算力资源在政企客户场景中落地行业大模型方案,可能首先面临的一个挑战是客户的算力资源有限。算力资源作为大模型落地的前提条件,是很多客户关注的重点,也是业务团队前期与客户沟通交流的一个重点。行业大模型场景落地是否一定需要大量的GPU算力,以及需要多少的算力才能满足落地需求?GPU算力主要消耗在两个地方,一是大
- 利用长尾关键词优化SEO策略提升网站流量的实用建议
老陈头聊SEO
其他
内容概要在当今数字营销的环境中,网站流量的获取是一项至关重要的任务。随着搜索引擎优化(SEO)技术的发展,长尾关键词逐渐被越来越多的网站管理员和内容创作者所重视。长尾关键词一般指的是那些较长且具体的搜索词组,虽然搜索量相对较少,但通常具有更高的转化率和更低的竞争度。因此,理解和利用长尾关键词,将为提升网站流量提供了有效手段。“要想在竞争激烈的网络环境中脱颖而出,主动挖掘和应用长尾关键词,将为您带来
- 利用AI优化SEO策略提升关键词排名的方法
老陈头聊SEO
SEO其他
内容概要在当今数字营销的新时代,利用AI技术来优化SEO策略已成为企业提升关键词排名的重要手段。AI不仅能够自动化处理海量数据,还能够通过智能分析为市场中的关键词选择提供更为精准的建议。这一过程中,企业可以利用AI进行关键词研究,以发现那些能够驱动流量的高效关键词。以下是利用AI技术优化SEO策略的一些基本知识及方法:方法描述关键词研究使用AI工具分析用户搜索行为,识别热门与相关关键词。内容结构优
- 基于JAVA开发APISIX插件
kiranet
后端架构gateway中间件
网关知识介绍什么是网关网关是一种能够在不同网络或协议之间进行数据交换的设备或服务器。网关可以实现不同网络之间的互联互通,也可以实现不同协议之间的转换和适配。网关可以根据不同的功能和层次进行分类。网关可以提供多种服务,例如路由、安全、负载均衡、缓存、压缩、加密、认证、授权、过滤、转码等。南北流量、东西流量南北流量客户端和服务器之间的流量被称为南北流量。东西流量不同服务器之间的流量与数据中心或不同数据
- 【llm对话系统】大模型 RAG 之回答生成:融合检索信息,生成精准答案
kakaZhui
人工智能AIGCchatgptllama
今天,我们将深入RAG流程的最后一步,也是至关重要的一步:回答生成(AnswerGeneration)。在这一步,LLM将融合用户问题和检索到的文档片段,生成最终的答案。这个过程不仅仅是简单的文本拼接,更需要LLM对检索结果进行理解、推理和整合,才能输出准确、流畅且符合用户需求的答案。一、回答生成的目标RAG中回答生成的目标主要包括:准确性(Accuracy):生成的答案需要准确回答用户的问题,并
- 探索SakuraLLM:轻小说与Galgame翻译的新纪元
蒋素萍Marilyn
探索SakuraLLM:轻小说与Galgame翻译的新纪元SakuraLLM适配轻小说/Galgame的日中翻译大模型项目地址:https://gitcode.com/gh_mirrors/sa/SakuraLLM在人工智能的浪潮中,SakuraLLM以其独特的魅力和强大的功能,成为了日中翻译领域的一颗璀璨明星。本文将深入介绍SakuraLLM项目,分析其技术特点,探讨其应用场景,并揭示其与众不同
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- AI学习指南Ollama篇-Ollama的多模态应用探索
俞兆鹏
AI学习指南ai
AI学习指南应用篇-Ollama的多模态应用探索一、引言(一)背景介绍随着大语言模型(LLM)的发展,多模态应用(结合文本、图像、语音等)成为新的趋势。多模态模型能够处理多种类型的数据,如文本、图像和语音,从而提供更丰富、更智能的交互体验。Ollama作为本地部署工具,支持多模态模型的运行,为开发者提供了强大的功能。(二)文章目标本文将探讨Ollama在多模态应用中的可能性,并通过实际案例展示如何
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 岩田聪游戏思想回顾
windwind2000
游戏业思考游戏游戏策划个人开发玩游戏创业创新
岩田聪主要负责经营企划部,与宫本茂的情报开发本部不同,更侧重企业战略,计划,管理,营销。二者类似战略与战术的关系,合在一起才是任天堂的完整思想。岩田聪的日常被各种会议,计划,采访,各种管理事务所占据,要面对上市公司财务压力与投资者质疑。wiiu失败时期压力很大。而宫本茂可以静心搞研发,不被打扰。……浓缩版:游戏研发的四大标准:创新,操作直观,吸引人-沉浸感,界面-新交互方式。/其中wiiu失败原因
- 用自然语言与mysql数据库对话几种方案的思考
闲云野鹤_SG
数据库mysqlAItext2sql自然语言本地部署大模型
如何用自然语言与mysql数据库对话,而不是用sql语句去查询数据库?处于安全考虑,可训练一个本地大语言模型来完成此项任务,mysql服务器中的数据大约有两万多条记录,服务器的作用主要是记录设备的出库和回库的流水账(即以时间为序的记录),但有一些sql查询比较复杂,必须根据特定的sql语句查询,否则很难得到准确稳定的答案,调试和训练大模型的方法有多种方式,比如lora训练模型,提示词方式,rag方
- 子曰-o1:网易有道开源国内首个分步式讲解推理模型,支持K12数学教学
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读功能:子曰-o1是国内首个分步式讲解推理模型,支持K12数学教学。技术:采用14B轻量级架构,专为消费级显卡设计,能在低显存设备上稳定运行。应用:应用于网易有道旗下的AI全科学习助手“有道小P
- Llama 3:开源大模型的里程碑式突破
XianxinMao
llama开源
标题:Llama3:开源大模型的里程碑式突破文章信息摘要:Meta通过Llama3展现了开源LLM的重大突破:采用超大规模训练数据和多阶段训练方法(SFT、rejectionsampling、PPO和DPO),突破了传统的Chinchilla最优比例法则。在产品策略上,针对8B和70B两种规模采用不同的训练数据截止日期,实现差异化定位。即将发布的400B模型有望达到GPT-4级别性能,但同时也凸显
- 对比DeepSeek、ChatGPT和Kimi的学术写作摘要能力
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能chatgptllama数据分析论文阅读
摘要摘要是文章的精华,通常在200-250词左右。要包括研究的目的、方法、结果和结论。让AI工具作为某领域内资深的研究专家,编写摘要需要言简意赅,直接概括论文的核心,为读者提供快速了解的窗口。下面我们使用DeepSeek、ChatGPT4以及Kimi辅助编写摘要。提示词:你现在是一名[计算机理论专家],研究方向集中在[人工智能、大模型、数据挖掘等计算机相关方向]。我现在需要撰写一篇围绕[人工智能在
- 小南每日 AI 资讯 | 国产AI之光DeepSeek暴击硅谷??? | 25/01/29
小南AI学院
人工智能
1.中国AI模型震惊硅谷:DeepSeek为何一夜火出圈?国产AI大模型DeepSeek迅速崛起,引发硅谷关注。2.中国银行支持AI产业:1万亿元金融扶持助推智能化升级中国银行宣布提供1万亿元资金支持人工智能产业链发展,助力智能化升级。3.国产AI大模型DeepSeek惊艳全球:游戏科学冯骥称其为“国运级别科技成果”DeepSeek的AI模型引起全球关注,游戏科学的冯骥高度评价其意义。4.AI产业
- 大型语言模型构建指南:从头开始构建大语言模型《Build a Large Language Model (From Scratch)》免费PDF
AGI大模型学习
语言模型pdf人工智能大模型大模型学习大模型教程大模型书籍
通过从头开始构建一个大型语言模型,了解如何创建、训练和调整大型语言模型(LLMs)!一、构建大型语言模型(从头开始)在《构建大型语言模型(从头开始)》中,你将了解如何LLMs从内到外工作。在这本富有洞察力的书中,畅销书作家塞巴斯蒂安·拉施卡(SebastianRaschka)将指导你逐步创建自己的LLM,用清晰的文字、图表和示例解释每个阶段。你将从最初的设计和创建到通用语料库的预训练,一直到特定任
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- 老板点赞!技术人如何用架构优化打赢降本增效战?
软件求生
#工作建议python开发语言面试java职场和发展
大家好,我是小米,一个喜欢分享技术的小架构师。今天,想和大家聊聊如何通过架构优化,帮助公司降本增效。这是我亲身经历的一件事,希望能给你一些启发!初识问题:成本居高不下的困境故事发生在两年前,我刚加入一家初创公司,负责技术架构。当时,我们的核心业务是一个电商平台,用户量持续增长,业务也蒸蒸日上。但问题也随之而来——技术成本和运营成本飞涨,利润逐渐被高昂的服务器和流量费用吃掉。老板找到我,说:“小米,
- AI大模型如何赋能电商行业
十二点的泡面
ai
随着技术的发展,越来越多的电商平台开始尝试运用AI技术来提高销售效率,从用户体验到供应链管理,AI深刻影响着行业的未来发展趋势。在AI加持下,如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法,为电商行业的数字化转型提供新的思路和方法。方向一:介绍AI技术在电商中的创新应用在电商领域,AI技术的应用正日益广泛,其中
- 华为OD机试D卷 --矩阵匹配--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为od矩阵pythonjavascriptjavac++c语言
文章目录题目描述输入描述输出描述用例题目解析java源码js源码python源码c源码c++源码题目描述从一个N*M(N≤M)的矩阵中选出N个数,任意两个数字不能在同一行或同一列,求选出来的N个数中第K大的数字的最小值是多少。输入描述输入矩阵要求:1≤K≤N≤M≤150输入格式:NMKN*M矩阵输出描述N*M的矩阵中可以选出M!/N!种组合数组,每个组合数组种第K大的数中的最小值。无需考虑重复数字
- 【 书生·浦语大模型实战营】学习笔记(五):LMDeploy 量化部署
GoAI
深入浅出LLM深入浅出AI大模型LLM部署人工智能LMDeploy
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI1;;爱好者学习,性价比非常高!加入星球➡️点击链接
- 设计模式Python版 建造者模式
小王子1024
设计模式Python版设计模式python建造者模式
文章目录前言一、建造者模式二、建造者模式示例三、省略指挥者(建议)四、钩子方法的引入前言GOF设计模式分三大类:创建型模式:关注对象的创建过程,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式:关注类和对象之间的组合,包括适配器模式、桥接模式、组合模式、装饰模式、外观模式、享元模式和代理模式。行为型模式:关注对象之间的交互,包括职责链模式、命令模式、解释器模
- 设计模式Python版 工厂方法模式
小王子1024
设计模式Python版设计模式python工厂方法模式
文章目录前言一、工厂方法模式二、工厂方法模式示例三、工厂方法模式客户端改进四、工厂方法模式隐藏工厂方法(可选)前言GOF设计模式分三大类:创建型模式:关注对象的创建过程,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式:关注类和对象之间的组合,包括适配器模式、桥接模式、组合模式、装饰模式、外观模式、享元模式和代理模式。行为型模式:关注对象之间的交互,包括职责
- 论文AI率:检测原理是什么?该如何降低论文AI率?
迪娜学姐
人工智能
我是娜姐@迪娜学姐,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。上一篇介绍了10个检测AI率的在线工具。本篇来说说AI率到底是如何检测出来的?该如何有效降低论文的AI率?和AI大模型一样,AI检测的核心也是机器学习模型,它们在包含人类创作和AI生成文本样本的大型数据集上进行训练,通过学习每种文本中存在的模式和特征,以此来区分人类创作的文本和AI生成文本。AI检测器查找的一些关键特征包
- 智能码二维码的成本效益分析
zhongtianhulian
软件工程
以下是智能码二维码的成本效益分析:成本方面硬件成本标签成本:二维码标签本身价格低廉,即使进行大规模应用,成本也相对较低。如在智能仓储中,塑料托盘加二维码方案的标签成本几乎可以忽略不计4。扫描设备成本:扫描设备种类繁多,从智能手机到专业扫描枪,价格差异大,可根据实际需求灵活选择。如果企业已有智能手机等设备,仅需配备少量专业扫描枪,硬件投入成本不高1。软件成本开发成本:若企业需要定制与二维码相关的管理
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- 动态规划算法(25.1.27)
一位不愿透露姓名的程序猿
算法动态规划
写在前面:已经有半年在忙计算机四大件了,算法可以说是除了10月份看了看代码随想录的题并跟着写了点题之外一点题都没做。1月末开始重拾算法,打算用点时间从做题曲成为algorithm高手,在那些中学就开始接触算法然后故意在我们零基础高考er面前大声讨论“茴字的写法”的OIer面前可以不再装死。0.前置了解:递归思想以及相关题目(详解递归思想-CSDN博客)1.动态规划算法基础概念:最简单的例子:斐波那
- 抓包工具:Mitmproxy
一张假钞
爬虫网络httphttps
Mitmproxy是一组工具,它们为HTTP/1、HTTP/2和WebSocket提供交互式、支持SSL/TLS的拦截代理。特性拦截HTTP和HTTPS请求和响应并动态修改它们。保存完整的HTTP对话,以便以后重放和分析。重放HTTP会话的客户端。重放以前记录的服务器的HTTP响应。反向代理模式将流量转发到指定的服务器。MacOS和Linux上的透明代理模式。使用Python脚本对HTTP流量进行
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号