P NP NPC NP hard

P类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。

NP问题不是非P类问题。NP问题是指可以在多项式的时间里验证一个解的问题。

NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。

当然有不是NP问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它。

试问一个图中是否不存在Hamilton回路。这样问题就没法在多项式的时间里进行验证了,因为除非你试过所有的路,否则你不敢断定它没有Hamilton回路

问题A可约化为问题B”有一个重要的直观意义:B的时间复杂度高于或者等于A的时间复杂度。也就是说,问题A不比问题B难。这很容易理解。既然问题A能用问题B来解决,倘若B的时间复杂度比A的时间复杂度还低了,那A的算法就可以改进为B的算法,两者的时间复杂度还是相同。正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。

现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序A的输入,都能按这个法则变换成程序B的输入,使两程序的输出相同,那么我们说,问题A可约化为问题B

人们想表达一个问题不存在多项式的高效算法时应该说它属于NPC问题

我们可以就此直观地理解,NPC问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。证明一个问题是NPC问题也很简单。先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它,这样就可以说它是NPC问题了。

NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比NPC问题的范围广)。NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard放宽了限定条件,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决。

转载:http://blog.sina.com.cn/s/blog_700aa88301012e5t.html

你可能感兴趣的:(hard,p,npc,NP,NP)