- 项目上线之后,出现过线上问题吗?怎么排查和解决的?
后端go面试问题
在面试中,相信大家都遇到过这个问题。本文将通过训练营内部抽奖项目的问题案例——抽奖结果通知延迟和抽奖列表加载缓慢,讲清楚它们的解决方法和优化策略。回答思路这些问题都是在我负责的项目中出现过的,给我留下了深刻的印象。一、出现的线上问题抽奖结果通知延迟问题表现:有部分中奖用户未能及时收到抽奖结果通知,影响了用户体验。影响范围:部分中奖用户。抽奖列表加载缓慢问题表现:在高峰时段,用户获取抽奖列表的速度明
- 使用 Spring AI 调用本地 模型实现
drebander
AI编程springjavaspringAI
在本篇博客中,我们将学习如何使用SpringAI框架调用本地的PyTorch模型,并通过SpringBoot提供一个预测接口。SpringAI是一个用于将人工智能应用集成到Spring生态系统中的框架,它支持多种AI模型和数据源的集成,帮助开发者将AI模型无缝地集成到Java应用中。1.准备PyTorch模型首先,我们需要训练并保存一个PyTorch模型。这里我们使用一个简单的神经网络模型作为示例
- 自动驾驶中的虚实迁移学习:降低对真实世界数据的依赖
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,迁移学习,虚实环境,数据效率,深度学习,强化学习1.背景介绍自动驾驶技术作为人工智能领域的重要应用之一,其发展离不开海量真实世界驾驶数据。然而,收集和标注真实世界驾驶数据成本高昂,且存在安全隐患。因此,如何降低对真实世界数据的依赖,提高自动驾驶系统的训练效率和安全性,成为一个亟待解决的关键问题。虚实迁移学习(Virtual-to-RealTransferLearning)作为一种新兴的机
- 详细介绍 NVIDIA GeForce RTX 系列,各显卡配置参数(长期更新 - 2024.12)
JiaWen技术圈
人工智能深度学习机器学习gpu算力AIGC人工智能图形渲染
NVIDIAGeForceRTX系列是NVIDIA面向消费级市场的高性能GPU产品线,注重提供高性能的图形处理能力和游戏特性。主要面向游戏玩家和普通用户,同时也被广泛用于深度学习推理和训练等计算密集型任务。主要GPU产品有:50Series、40Series、30Series、20Series、10Series。其主要参数如下:NVIDIAGeForceRTX50Series规格架构:Blackw
- 自动检测和机器审核系统实现
╰つ゛木槿
javaeasyuijavascriptpythonjava自然语言处理
目录一、自动检测和机器审核实现步骤1.文本预处理步骤细节:2.关键词检测步骤细节:3.情感分析与情境理解步骤细节:4.机器学习模型训练步骤细节:5.深度学习模型步骤细节:6.多模态审查步骤细节:7.用户行为分析与违规预测步骤细节:总结二、常用的分词工具1.jieba2.THULAC3.HanLP4.SnowNLP5.LAC(LexicalAnalysisofChinese)6.PyLDAvis(结
- 大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
feifeikon
论文阅读
摘要自主网页导航的进展一直受到以下因素的阻碍:依赖于数十亿次的探索性交互(通常采用在线强化学习),依赖于特定领域的模型设计,难以利用丰富的跨领域数据进行泛化。在本研究中,我们探讨了基于视觉-语言基础模型的数据驱动离线训练方法,以改进网页代理的性能。我们提出了一种名为WebGUM的指令跟随多模态代理,该代理能够同时观察网页截图和HTML页面,并输出网页导航操作,例如点击和输入文本等。WebGUM通过
- 自学成才之路,DeepSeek R1 论文解读
智识世界Intelligence
神经网络深度学习自然语言处理课程设计学习方法
DeepSeekR1的论文看完后,后劲很大。虽然我推荐所有人都去阅读一下,但我估计实际去读的人应该很少。今天把论文里的三个亮点,用通俗易懂地方式写出来,希望能让更多人了解这篇论文有多么重要。亮点一:告别“刷题班”,纯“实战”也能练出推理大神!我们平时学习,是不是经常要“刷题”?做大量的练习题,才能巩固知识,提高解题能力。以前训练AI模型,也差不多是这个套路,要先给AI“喂”大量的“习题”(监督数据
- Python 如何使用 Bert 进行中文情感分析
程序员徐师兄
Python入门专栏pythonbert开发语言情感分析
前言在自然语言处理(NLP)领域,情感分析是一个非常常见且重要的应用。情感分析通常用于识别文本中的情感,例如判断一条微博或评论是正面、负面还是中性。在过去的几年中,随着深度学习的发展,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型迅速成为了处理自然语言的强大工具。BERT是一种基于Transformer架构的预训练模型,它能够
- P1 Pytorch入门实战——Pytorch实现mnist手写数字识别
今天补充能量了吗
pytorch人工智能python深度学习机器学习
本文為365天深度學習訓練營中的學習紀錄博客原作者:K同学啊|接輔導、項目定制一、MNIST手写数字数据集介绍MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28。如果我们把每一张图片中的像素转换为向量,则得到长度
- Alluxio在数据索引和模型分发中的核心价值与应用
人工智能大数据模型索引
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 深入理解旋转位置编码(RoPE)及其在大型语言模型中的应用
tangjunjun-owen
语言模型-多模态大模型语言模型人工智能自然语言处理RoPE旋转位置编码
文章目录前言一、旋转位置编码原理1、RoPE概述2、复数域内的旋转1、位置编码生成2、应用位置编码二、RoPE的实现细节1、RotaryEmbedding类设计2、apply_rotary_pos_emb函数3、demo_apply_rotary_pos_emb函数三、完整RoPE代码Demo前言随着自然语言处理(NLP)领域的快速发展,预训练的语言模型如BERT、GPT系列、PaLM、Qwen等
- TRELLIS文本或图像生3d模型一键整合包win版本,省去繁琐安装、效果超Wonder3D,对硬件要求更低速度更快16g N卡可流畅运行
struggle2025
计算机视觉人工智能深度学习图像处理集成学习AI作画
一、介绍:TRELLIS文生、图生3d模型软件介绍,目前只开放了图生3D(文末提供整合包下载)TRELLIS是一个大型3D资产生成模型。它接受文本或图像提示,并生成各种格式的高质量3D资产,如辐射场、3D高斯和网格。TRELLIS的基石是一种统一的结构化LATent(SLAT)表示法,允许解码到不同的输出格式,以及为SLAT定制的校正流变换器作为强大的后端。我们提供大规模预训练模型,参数高达20亿
- Copilot 概述
计算机萍萍学姐
copilotcopilot人工智能机器学习
Copilot是什么?它有什么用途?Copilot是由人工智能公司和GitHub合作开发的一个基于人工智能的代码提示工具,它可以利用机器学习技术和大量训练数据生成高质量的代码。Copilot的目标是在保持代码质量和可读性的前提下,提高开发者的编码效率,使得编码工作更为高效和便捷。Copilot的出现是解决编程过程中可能遇到的一些难点和瓶颈问题,特别是在快速迭代的敏捷开发场景中,提高编码效率和减少编
- Spring Boot编程训练系统:测试驱动开发(TDD)实践
原机小子
springboottdd后端
摘要随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了编程训练系统的开发全过程。通过分析编程训练系统管理的不足,创建了一个计算机管理编程训练系统的方案。文章介绍了编程训练系统的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。本编程训练系统管理员功能有管理员和用户。管理员功能有个人中心,用户管理,题库资源管理,用户交流,试卷管
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
人工智能机器学习深度学习
摘要随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。引言日志是系统运行状态的关键数据来源,但面对海量日志数据,传统规则式分析显得力不从心。机器学习能够根据日志的历史数据和行为模式,通过训练模型检测异常情况,不
- 龙年公仔放送 | EdgeOne网站加速与防护训练营,鹅厂大牛带你实战无忧!
cdn
在数字化时代,网站的性能与安全性直接关系到用户体验和业务连续性,而当前许多网站面临着访问速度慢、加载时间长、易受DDoS攻击、CC攻击等安全威胁的困扰,而EdgeOne作为腾讯云下一代的CDN,集加速与安全防护于一身,已广泛应用于电商、金融、游戏等行业。如何应用EdgeOne,高效玩转网站加速与防护?腾讯云开发者社区携手EdgeOne团队精心打造《EdgeOne一站式玩转网站加速与防护实战营》,鹅
- QAT与PTQ模型量化方法的区别
old_power
计算机视觉模型量化深度学习计算机视觉
QAT(QuantizationAwareTraining)和PTQ(PostTrainingQuantization)是两种常见的模型量化方法,用于减少深度学习模型的计算和存储开销,同时尽量保持模型的性能。1.QAT(QuantizationAwareTraining)定义:QAT是在模型训练过程中引入量化操作,使模型在训练时就能感知到量化带来的影响,从而更好地适应量化后的精度损失。流程:在训练
- 机器人学习的范式转变:从专用走向通用基础模型
XianxinMao
机器人
标题:机器人学习的范式转变:从专用走向通用基础模型文章信息摘要:机器人学习正经历从特定任务向通用基础模型的范式转变,这一演进路径与大语言模型相似。通过多机器人协作和跨任务泛化能力的成功,基础模型方向展现出实现通用人工智能的潜力。然而,这一转变面临两大关键挑战:机器人硬件的高昂成本限制了大规模部署和数据采集,以及获取足够规模和多样性的训练数据存在实际困难。突破这些瓶颈需要在制造工艺创新、数据共享生态
- 强化学习代码实践1.DDQN:在CartPole游戏中实现 Double DQN
洪小帅
游戏pythongympytorch深度学习
强化学习代码实践1.DDQN:在CartPole游戏中实现DoubleDQN1.导入依赖2.定义Q网络3.创建Agent4.训练过程5.解释6.调整超参数在CartPole游戏中实现DoubleDQN(DDQN)训练网络时,我们需要构建一个使用两个Q网络(一个用于选择动作,另一个用于更新目标)的方法。DoubleDQN通过引入目标网络来减少Q-learning中过度估计的偏差。下面是一个基于PyT
- 未登录词 Out-of-Vocabulary, OOV
risc123456
nlp
未登录词oov未登录词(Out-of-Vocabulary,OOV)是指在训练数据中没有出现过的词汇,但在测试数据或实际应用中却出现了。未登录词是自然语言处理(NLP)任务中常见的挑战之一,因为它们可能导致模型无法正确处理或理解这些词汇,从而影响模型的性能。以下是一些关于未登录词的详细解释和处理方法:###未登录词的来源1.**罕见词**:在训练数据中出现次数非常少的词,可能在训练过程中被忽略或未
- 高效使用Alibaba Cloud PAI EAS进行AI模型推理
sagvWSRJHMNEB
人工智能深度学习神经网络python
技术背景介绍在当今的AI模型开发中,高效的推理服务是将训练好的模型投入实际应用的关键环节。AlibabaCloudPAI平台专为企业级AI开发提供了一整套服务,其中的PAI-EAS(ElasticAlgorithmService)是用于模型推理和部署的高性能服务。它支持多种硬件资源,能够在高吞吐量和低延迟环境下运行复杂模型,并提供灵活的弹性扩展和全面的运维监控系统。核心原理解析PAI-EAS通过结
- 使用OpenAI Chat模型进行自然语言处理的实战指南
GEAWfaacc
自然语言处理easyui人工智能python
在本文中,我们将详细介绍如何利用OpenAI的Chat模型进行自然语言处理任务。我们将涵盖从API配置到实际应用的一整套流程,并提供可运行的代码示例来帮助大家上手。如果你对AI对话模型的实际应用感兴趣,那么这篇文章将非常适合你。一、技术背景介绍OpenAI的Chat模型是一类专门用于对话任务的预训练语言模型。它们可以处理多种输入类型,支持丰富的功能调用,适用于各种自然语言处理场景。从翻译到对话生成
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 机器学习算法(八):基于BP神经网络的乳腺癌的分类预测
墨枣
机器学习算法神经网络分类人工智能
机器学习算法(八):基于BP神经网络的乳腺癌的分类预测本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc1.算法简介和应用1.1算法简介BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经
- WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集。
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 【Codex】Evaluating Large Language Models Trained on Code
NLP_wendi
深度学习Transformerdeeplearning人工智能
这篇文章来解读最近比较有意思的Transformer预训练模型在自动生成代码方面的应用,PaperLink:EvaluatingLargeLanguageModelsTrainedonCode自动生成Code系列文章解读:【AlphaCode】Competition-LevelCodeGenerationwithAlphaCodeAbstract我们提出了Codex模型,基于GPT的模型架构,在G
- 3D Gaussian Splatting 部署
学术菜鸟小晨
最新人工智能技术三维重建
简介:3DGaussianSplatting是一种用一组2d图像创建3d场景的方法,你只需要一个场景的视频或者一组照片就可以获得这个场景的高质量3d表示,使你可以从任何角度渲染它。它们是一类辐射场方法(如NeRF),但同时训练速度更快(同等质量)、渲染速度更快,并达到更好或相似的质量。3DGaussianSplatting可以实现无界且完整的场景1080p分辨率下进行高质量实时(≥100fps)视
- 使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
- WebRover: 专为训练大型语言模型和 AI 应用程序而设计的 Python 库
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 蓝桥杯 试题 算法训练 最小距离 ( C++ )
ghost_him
蓝桥杯练习算法蓝桥杯c++
最小距离最小距离算法题目算法代码算法的核心思路最小距离算法题目资源限制时间限制:1.0s内存限制:256.0MB最小距离问题描述数轴上有n个数字,求最近的两个数,即min(abs(x-y))输入格式第一行包含一个整数n。接下来一行,表示n整数。输出格式一个整数表示最小距离样例输入673411917样例输出1样例说明取3和4数据规模和约定n#includeusingnamespacestd;cons
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&