- DP优化专题
pytKonnyaku
算法动态规划
文章目录倍增优化DP[NOIP2012提高组]开车旅行题目描述输入格式输出格式数据结构优化DP清理班次2赤壁之战估算单调队列优化DP[SCOI2010]股票交易题目描述裁剪序列单调队列优化多重背包斜率优化DPⅠ状态转移方程Ⅱ决策点关系Ⅲ凸壳Ⅳ维护答案Ⅴ特殊性Ⅵ模板CodeⅦ注意事项K匿名序列四边形不等式优化DP定义:定理:一维线性DP的四边形不等式优化决策单调性定理二维四边形不等式优化DP决策单调
- 开放传神(OpenCSG)手撕Sora的Diffusion Transformer (DiT)算法
OpenCSG
transformer算法深度学习人工智能stablediffusion
“Sora的出现不是偶然,而是经过长期积累、反复试错及用户反馈的必然。”OpenAI尝试过递归网络、生成对抗网络、自回归Transformer及扩散模型。最终诞生了DiffusionTransformer。其充分利用了大语言模型Token的好处,让像素也能够被预测(Patches)。Sora的诞生不亚于2023年ChatGPT的出现,因为我们的世界是一个五彩斑斓的图像和视频组成。Sora通过社区和
- STM32完全学习——0V5640的JPEG模式采集
小A159
学习
一、写在前面我参考的是买开发板的时候,普中送的资料里面的源码,他那个是用标准库写的,我将他的代码移植到了HAL库,有一些不一样的地方。由于标准库和HAL库的差别造成的。二、编程思路首先初始化OV5640模块,使用的是SCCB总线,和I2C很像,具体的就不说了,再就是将OV5640设置成JPEG输出模式,然后就是调整OV5640输出的图像的大小。下来就是开启DMA传输。然后每捕获一帧图像,DCMI会
- C语言实现Berlekamp-Massey算法
belle-de-jour
密码分析算法c语言抽象代数密码学信息与通信线性代数
Berlekamp-Massey算法是一种广泛应用于纠错编码中的迭代算法,我们在许多纠错编码中都能看见它的用途。BM算法最初是为了解决线性递推序列的问题而提出的,后来被广泛应用于纠错编码中,特别是用于解码如RS码(Reed-Solomon码)和BCH码等循环纠错码。这些编码方案在数据传输和存储系统中扮演着重要角色,能够纠正多个错误并检测潜在的错误,从而确保数据的完整性和可靠性。BM算法基本原理BM
- 基于粒子群算法的电力系统无功优化研究(IEEE14节点)(Matlab代码实现)
科研_G.E.M.
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、粒子群算法简介三、无功优化数学模型四、IEEE14节点系统简介五、基于粒子群算法的无功优化实现六、仿真结果与分析七、结论与展望2运行结果3参考文献4Matlab代码实现⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏
- 利用MATLAB实现多重分形维数计算:理论解析与实战指南
m0_57781768
matlab人工智能算法
利用MATLAB实现多重分形维数计算:理论解析与实战指南引言多重分形(Multifractal)理论作为现代复杂系统分析的重要工具,广泛应用于物理学、地球科学、生物医学、金融工程等多个领域。其通过分析数据的多重分形维数,可以揭示出系统内在的复杂性和不均匀性。本文将详细介绍多重分形的基础理论,并结合MATLAB实现多重分形维数的计算,提供详尽的代码示例和数据处理指南,以便于读者在实际工作中应用。多重
- 深度神经网络(DNN)详解
古龙飞扬
dnn人工智能神经网络
深度神经网络(DNN,DeepNeuralNetwork)是人工智能领域中的一种重要模型,它通过模拟人脑神经网络的结构和工作原理,实现了对复杂数据的处理和决策。以下是对深度神经网络(DNN)的超详细解析:一、DNN的基本概念DNN是一种具有多个隐藏层的神经网络模型,其核心在于其深度,即包含多个隐藏层。这些隐藏层通过非线性变换,使得模型能够捕捉到数据中的复杂关系和模式。DNN通常由输入层、隐藏层和输
- Zernike 多项式在圆形、六边形、椭圆形、矩形或环形瞳孔上应用(Matlab代码实现)
wlz249
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码实现⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要
- 【EI复现】【基于改进粒子群算法求解】一种建筑集成光储系统规划运行综合优化方法(Matlab代码实现)
创新优化代码学习
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码、数据、文档讲解1概述文献来源:摘要:容量优化配置与能量调度是建筑集成光储系统(buildingintegratedphotovoltaic,BIPV)规划和运行阶段的核心问题,合理的容量配置及能量调度能够有效提升系统的经济
- 【EI复现】【基于改进粒子群算法求解】一种建筑集成光储系统规划运行综合优化方法(Matlab代码实现)
砌墙_2301
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码、数据、文档讲解1概述文献来源:摘要:容量优化配置与能量调度是建筑集成光储系统(buildingintegratedphotovoltaic,BIPV)规划和运行阶段的核心问题,合理的容量配置及能量调度能够有效提升系统的经济
- 【Matlab高端绘图SCI绘图模板】第006期 对比绘柱状图 (只需替换数据)
小熊科研路(同名GZH)
可视化matlab信息可视化开发语言
1.简介柱状图作为科研论文中常用的实验结果对比图,本文采用了3组实验对比的效果展示图,代码已调试好,只需替换数据即可生成相关柱状图,为科研加分。通过获得Nature配色的柱状图,让你的论文看起来档次更高,让你的科研更快地进行成果产出。用户能够生成既美观又精确的数据可视化图表。代码涵盖了从数据准备到最终图像输出的全过程,包括文件读取、颜色自定义、图形界面设置、数据可视化以及图像导出等关键步骤。适合数
- python 只用opencv吗,python – OpenCV:使用solvePnP来确定单应性
weixin_39934296
python只用opencv吗
在过去的几周里,我尝试学习纠正图像,并在这里的人们的帮助下,我已经设法更好地理解它.大约一个星期前,我设置了一个我想要纠正的测试示例(从上面查看图像).这很好(原始:http://sitedezign.net/original.jpg和纠正:http://sitedezign.net/rectified.jpg)功能T=cv2.getPerspectiveTransform(UV_cp,XYZ_g
- solvepnp
weixin_30677617
人工智能
CV_EXPORTS_WboolsolvePnP(InputArrayobjectPoints,-世界坐标系下的控制点的坐标,vector的数据类型在这里可以使用InputArrayimagePoints,-在图像坐标系下对应的控制点的坐标。vector在这里可以使用InputArraycameraMatrix,-相机的内参矩阵InputArraydistCoeffs,-相机的畸变系数Output
- <camera>ISP的处理流程梳理-NRluma(亮度降噪模块)
waterAdmin
android车载系统视觉检测c++c语言isp
<camera>ISP的处理流程梳理-开篇<camera>ISP的处理流程梳理-DPC(坏点校正)<camera>ISP的处理流程梳理-BLC(黑电平校正)<camera>ISP的处理流程梳理-AAF(抗混叠滤波器)<camera>ISP的处理流程梳理-LSC(镜头阴影校正)<camera>ISP的处理流程梳理-AWB(自动白平衡)<camera>ISP的处理流程梳理-CNF(色度噪声滤波)<ca
- 费雪的线性判别分析(2)
CS创新实验室
数学基础人工智能机器学习线性代数
《费雪的线性判别分析》分为两部分,这是第二部分,第一部分的连接如下:费雪的线性判别分析(1)3.计算判别阈值如果要判别某个样本属于哪一类,必须计算出阈值w0w_0w0,求解方法有两种:贝叶斯方法。此方法在另外一篇《线性判别分析》中详解最小二乘法。此处演示此方法的求解过程3.1最小二乘法[6]^{[6]}[6]关于最小二乘法的详细讲解,请阅读参考资料[2]的有关章节,在其中对最小二乘法通过多个角度给
- chatgpt赋能Python-python_pyomo
atest166
ChatGptpythonchatgpt开发语言
PythonPyomo:优化问题解决利器PythonPyomo是一个开源的Python优化建模语言工具箱。它提供了一种简单灵活的方法来描述优化问题,并在可行性、线性、非线性、混合整数和二次规划等方面提供广泛的建模和求解功能。优点灵活:Pyomo可以通过对象导向编程方式来描述优化问题,而无需使用特定的语法或格式。它提供了一种比传统表格方式更灵活的方式来表示问题。可扩展:Pyomo的建模框架可以很容易
- 使用Python调用OpenCV中的solvePnP函数
WzisTypescript
pythonopencv开发语言OpenCV
OpenCV是一个广泛使用的计算机视觉库,它提供了许多用于处理图像和视频的功能。其中一个重要的功能是解决透视投影问题,也就是通过已知的3D点和对应的2D图像点来计算相机的位姿。在OpenCV中,solvePnP函数就是用于解决这个问题的。solvePnP函数使用了一种称为Perspective-n-Point(PnP)问题的算法,它可以估计相机的旋转和平移向量,从而确定相机在3D空间中的位置。这对
- 最小二乘法-线性回归 和 梯度下降法
梦回楼~
最小二乘法算法机器学习人工智能
最小二乘法一、最小二乘法概念以及应用 最小二乘法(LeastSquaresMethod,LSE)是一种数学优化技术,主要用于寻找最佳拟合给定数据点的函数。它通过最小化观测值与模型预测值之间的差的平方和来估计模型参数。 换成听得懂的话说就是,我们有一组数据(x1,y1),(x2,y2)…(xn,yn),我们也知道他的数学表达式的形式例如y=kx+b(但是不知道k、b的具体值),但是(xn,yn)
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- 使用小尺寸的图像进行逐像素语义分割训练,出现样本不均衡训练效果问题
司南锤
深度学习遥感计算机视觉人工智能机器学习
在使用小尺寸图像进行逐像素语义分割训练时,确实可能出现样本不均衡问题,且这种问题可能比大尺寸图像更显著。1.小尺寸图像如何加剧样本不均衡?(1)局部裁剪导致类别分布偏差问题:遥感图像中某些类别(如道路、建筑)可能稀疏分布。小尺寸裁剪后,部分训练样本可能完全不含某些类别(例如一块纯农田的补丁),导致模型对这些类别缺乏学习机会。示例:原图中“道路”占比5%,若裁剪为256x256的小图,部分小图中可能
- 如何解决小尺寸图像分割中的样本不均衡问题
司南锤
深度学习遥感笔记深度学习
1.生成对抗数据增强(Copy-PasteAugmentation)原理:将稀有目标的像素块复制粘贴到其他图像中,低成本生成平衡数据。适用场景:小目标(如车辆、船只)或极端稀疏类别(如灾害损毁区域)。PyTorch实现:importrandomdefcopy_paste_augment(image,mask,paste_image,paste_mask):#从粘贴数据中随机选择一个目标实例obj_
- 从零推导线性回归:最小二乘法与梯度下降的数学原理
Echo-Nie
机器学习机器学习线性回归人工智能梯度下降数学推导
欢迎来到我的主页:【Echo-Nie】本篇文章收录于专栏【机器学习】本文所有内容相关代码都可在以下仓库中找到:Github-MachineLearning1线性回归1.1什么是线性回归线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直线(或者一个平面),让这条直线尽可能地“拟合”已有的数据点,通过这条直线,我们可以预测新的数据。eg:假设你想预测房价,你知道房子的大小(面积)
- 机器视觉python+opencv函数库:一
二师弟_k
opencvpython
对此图片进行操作:代码部分:第一步:importcv2#导入opencv函数库img_test=cv2.imread(r"C:\Users\12044\Desktop\test.png")#读取图像,img_test为原图名称cv2.imshow("image",img_test)#显示图像,引号中的内容为图像显示窗口的名称,即“image”cv2.waitKey(0)#等待事件触发,参数0表示永
- cv python_python里面cv是什么意思
weixin_40004659
cvpython
OpenCV(OpenSourceComputerVisionLibrary)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV由一系列C函数和C++类构成,它有C,C++,Python和java接口,当前SDK(SoftwareDevelopmentKit软件
- #深度学习:从基础到实践
single_ffish
深度学习gpt神经网络生成对抗网络1024程序员节
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。1.深度学习的基础1.1人工神经网络深度学习是基于人工神经网络(ArtificialNeuralNetwork,ANN)的一种机器学习
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
灵封~
scikit-learn线性回归python
一、导入必要的库importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLinearRegressionfromsklearn.metricsimportmean_squared_error,r2_score二、加载自定义数据集#创建自定义数据集#假设我们有一个简单
- Python中opencv的一些函数及应用
灵封~
pythonopencv开发语言
Sobel算子函数功能:Sobel算子用于计算图像的梯度(变化率),常用于边缘检测。它通过对图像应用一个基于一阶导数的滤波器来强调图像中的边缘部分,特别是水平和垂直方向上的边缘。通过计算图像的梯度,可以获得图像中亮度变化较大的地方,这些地方通常是物体的边界。Sobel算子有两个方向的变体:SobelX:计算水平方向的梯度。SobelY:计算垂直方向的梯度。Sobel算子函数:cv2.Sobel()
- CVPR 2024 无人机/遥感/卫星图像方向总汇(航空图像和交叉视角定位)
点云SLAM
图形图像处理深度学习计算机视觉遥感卫星图像交叉视觉定位CVPR
1、UAV、RemoteSensing、SatelliteImage(无人机/遥感/卫星图像)UnleashingUnlabeledData:AParadigmforCross-ViewGeo-Localization⭐codeRethinkingTransformersPre-trainingforMulti-SpectralSatelliteImagery⭐codeAerialLifting:
- 【mysql基础语法】
baboozx
mysql
sql基础语法一基本语法查询:select字段from表名where条件插入:insertinto表名(column_name)values(values)删除:deletefrom表名where条件更新:update表名set(column_name=value),where条件应用于某列的聚合函数。聚合函数对数据进行数学运算,如计算平均值(AVG)、总和(SUM)、最大值(MAX)、最小值(M
- coxphfit+matlab,计算Cox比例风险模型的coxph和cph函数有什么区别?
Mandy Liu
coxphfit+matlab
RCS=受限立方样条。您可以通过查看help(package="rms")找到函数的帮助文件下面是源代码的摘录,所以你可以看到那里的cph函数调用coxph.fit功能(的coxph在survival包胆量)>cph[...]if(nullmod)f=NULLelse{ytype=attr(Y,"type")fitter=if(method=="breslow"||method=="efron")
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj