- MapReduce概述
Tate小白
大数据学习mapreduce
1、MapReduce概述1.1MapReduce定义MapReduce是一个分布式运算程序的编程框架,是用户开发“Hadoop的数据分析应用”的核心框架。MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Reduc
- 【笔记-软考】大数据架构-Lambda与Kappa架构对比
我叫白小猿
软考软考架构大数据KappaLambda
Author:赵志乾Date:2024-07-28Declaration:AllRightReserved!!!1.简介大数据系统架构的设计思想很大程度受技术条件和思维模式的限制;Lambda架构在提出初期面向小范围业务,直接将成熟离线处理技术(Hadoop)和实时处理技术(Storm)相结合,用View模型将二者处理后得到的输出结果结合起来,在服务层进行统一后,再开放给上层服务,是相当可行且高效
- HDFS(Hadoop分布式文件系统)总结
Cachel wood
大数据开发hadoophdfs大数据散列表算法哈希算法spark
文章目录一、HDFS概述1.定义与定位2.核心特点二、HDFS架构核心组件1.NameNode(名称节点)2.DataNode(数据节点)3.Client(客户端)4.SecondaryNameNode(辅助名称节点)三、数据存储机制1.数据块(Block)设计2.复制策略(默认复制因子=3)3.数据完整性校验四、文件读写流程1.写入流程2.读取流程五、高可用性(HA)机制1.单点故障解决方案2.
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- Hadoop的部分用法
覃炳文20230322027
hadoophive大数据分布式
前言Hadoop是一个由Apache基金会开发的开源框架,它允许跨多个机器使用分布式处理大数据集。Hadoop的核心是HDFS(HadoopDistributedFileSystem)和MapReduce编程模型。1.Hadoop环境搭建在开始使用Hadoop之前,你需要搭建Hadoop环境。这通常包括安装Java、配置Hadoop环境变量、配置Hadoop的配置文件等步骤。1.1环境准备在开始安
- Netty4.1 - TCP粘包拆包解决方案及案例代码
wwyh520
IO编程netty
Netty是目前业界最流行的NIO框架之一,它的健壮性、高性能、可定制和可扩展性在同类框架中都是首屈一指。它已经得到了成百上千的商业项目的验证,例如Hadoop的RPC框架Avro就使用了Netty作为底层通信框架,其他的业界主流RPC框架,例如:Dubbo、Google开源的gRPC、新浪微博开源的Motan、Twitter开源的finagle也使用Netty来构建高性能的异步通信能力。另外,阿
- Storm核心概念与实战详解
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2010年Hadoop项目开源后,Storm项目也随之走向人气爆棚。在如此火热的当下,给我们带来的好处不仅仅是增强对Hadoop平台的掌控能力,更重要的是让我们感受到了快速发展、海量数据处理能力、低延迟的优势。在这一系列文章中,我将深入浅出地介绍Storm项目,并从实际案例出发,带领大家全面理解Storm中的关键概念及其运作方式,让您轻松掌握Storm的高效率、
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- Hadoop 发展过程是怎样的?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2003年,美国加州大学洛杉矶分校教授李彦宏博士发明了一种分布式文件系统——GFS(GoogleFileSystem)。由于该文件系统设计得足够简单,可以适应大规模数据集存储需求,在此基础上演化出多种应用,包括MapReduce、BigTable、PageRank等,并成为当时互联网公司的标配技术之一。2004年,Google发布了第一版Hadoop项目,定位是
- 通过CDH安装Spark的详细指南
暴躁哥
大数据技术spark大数据分布式
通过CDH安装Spark的详细指南简介ClouderaDistributionofHadoop(CDH)是一个企业级的大数据平台,它集成了多个开源组件,包括Hadoop、Spark、Hive等。本文将详细介绍如何通过CDH安装和配置Spark。前提条件在开始安装之前,请确保满足以下条件:已安装CDH集群具有管理员权限所有节点之间网络互通系统时间同步足够的磁盘空间(建议至少预留20GB)安装步骤1.
- Hadoop 版本进化论:从 1.0 到 2.0,架构革命全解析
拾光师
大数据后端
Hadoop版本hadoop1.x版本由三部分组成Common(辅助工具)HDFS(数据存储)MapReduce(计算和资源调度)存在的问题JobTracker同时具备了资源管理和作业控制两个功能,成为了系统的最大瓶颈采用了master/slave结构,master存在单点问题,一旦master出现故障,会导致整个集群不可用采用了基于槽位的资源分配模型,将槽位分为了Mapslot和Reducesl
- Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践
拾光师
大数据后端
HadoopRPCHadoopRPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践
后端
HadoopRPCHadoopRPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 《从零开始:Hadoop 3.3.0 全分布式环境搭建与运行详解(含自动化配置)》
李哈哈敲代码
学习经验分布式hadoop自动化大数据linux
Hadoop3.3.0全分布并环境搭建与运行部署详解一、准备工作1.1环境要求三台Linux主机,如node1、node2、node3配置推荐:内存大于4GB,CPU大于2核,磁盘空间大于40GB1.2软件列表JDK1.8(!!需要提前上传到software目录下,解压到server目录下)Hadoop3.3.01.3目录规划(注意在根目录下创建export)/export/server#安装目录
- Hadoop等大数据处理框架的Java API
扬子鳄008
Javahadoopjava大数据
Hadoop是一个非常流行的大数据处理框架,主要用于存储和处理大规模数据集。Hadoop主要有两个核心组件:HDFS(HadoopDistributedFileSystem)和MapReduce。此外,还有许多其他组件,如YARN(YetAnotherResourceNegotiator)、HBase、Hive等。下面详细介绍Hadoop及其相关组件的JavaAPI及其使用方法。HadoopHad
- python--将mysql建表语句转换成hive建表语句
呆呆不呆~
sparkpythonmysqlhivespark
1.代码importjsonimportsysimportpymysqldefqueryDataBase(tablename):#连接数据库并查询列信息conn=pymysql.connect(user='root',password='123456',host='hadoop11')cursor=conn.cursor()cursor.execute("SELECTcolumn_name,dat
- 手把手教你玩转 Sqoop:从数据库到大数据的「数据搬运工」
AAA建材批发王师傅
数据库sqoop大数据hivehdfs
一、Sqoop是什么?——数据界的「超级搬运工」兄弟们,今天咱们聊个大数据圈的「搬运小能手」——Sqoop!可能有人会问:这玩意儿跟Flume啥区别?简单来说:Flume是专门搬日志数据的「快递员」而Sqoop是搬数据库数据的「搬家公司」它的名字咋来的?SQL+Hadoop,直接告诉你核心技能:在关系型数据库(比如MySQL)和Hadoop家族(HDFS、Hive、HBase)之间疯狂倒腾数据!核
- Python 工程师迈向大数据时代: Hadoop 与 Spark 框架深度解析与实战指南
清水白石008
pythonPython题库大数据pythonhadoop
Python工程师迈向大数据时代:Hadoop与Spark框架深度解析与实战指南引言亲爱的Python工程师们,欢迎来到大数据时代!在这个数据驱动的时代,海量数据如同奔腾不息的河流,蕴藏着前所未有的价值。然而,传统的数据处理工具在面对TB甚至PB级别的数据时,往往显得力不从心。如何高效地处理、分析和挖掘这些海量数据,成为了现代软件工程师,特别是Python工程师们必须掌握的关键技能。幸运的是,大数
- 从 0 到 Offer!大数据核心面试题全解析,答案精准拿捏面试官(hadoop篇)
浅谈星痕
大数据
1.什么是Hadoop?Hadoop是一个开源的分布式系统基础架构,用于存储和处理大规模数据集。它主要包含HDFS(HadoopDistributedFileSystem)分布式文件系统、MapReduce分布式计算框架以及YARN(YetAnotherResourceNegotiator)资源管理器。HDFS负责数据的分布式存储,将大文件分割成多个数据块存储在不同节点上;MapReduce用于分
- [5-03-01].第14节:集群搭建 - 在Linux系统中搭建
1.01^1000
#企业级框架springcloud
SpringCloud学习大纲三、集群环境搭建:3.1.集群规划1.nacos规划:hadoop103hadoop104hadoop105192.168.148.3192.168.148.4192.168.148.5nacosnacosnacos2.MYSQL规划:192.168.148.333065.7.27
- 大数据学习(141)-分布式数据库
viperrrrrrr
大数据学习分布式clickhousehdfshbase
在分布式数据库中主要有hdfs、hbase、clickhouse三种。HDFS(HadoopDistributedFileSystem)、HBase和ClickHouse都是处理大数据的分布式系统,但它们的设计目标、架构和适用场景有所不同。一、HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生态系统的一部分,是一个高度容错的系统,适合存储大量数据。它被设计为
- HDFS Federation(联邦) 架构YARN的Capacity Scheduler调度策略 ResourceManager的共享存储具体实现方式
2401_8554978
hdfs架构java
HDFSFederation(联邦)架构什么是HDFSFederation?随着数据量的增长,单一的NameNode成为了HDFS的瓶颈,因为它需要管理整个文件系统的命名空间和所有文件块的位置信息。为了克服这个限制,Hadoop引入了Federation机制,允许一个集群中有多个NameNode/NameSpace,每个NameNode管理一部分文件系统,从而分散负载。优点:提高扩展性:通过增加N
- scp与rsync
JeremyHeria
#hadoophadoop大数据
编写集群分发脚本xsyncscp(securecopy)安全拷贝(1)scp定义:scp可以实现服务器与服务器之间的数据拷贝。(fromserver1toserver2)(2)基本语法scp-rpdir/pdir/pdir/fnameuser@hadoopuser@hadoopuser@
- 复习打卡大数据篇——Hadoop HDFS 03
筒栗子
大数据hadoophdfs
目录1.HDFS元数据存储2.HDFSHA高可用1.HDFS元数据存储HDFS中的元数据按类型可以分为:文件系统的元数据:包括文件名、目录名、修改信息、block的信息、副本信息等。datanodes的状态信息:比如节点状态、使用率等。HDFS中的元数据按存储位置可以分为内存中元数据和磁盘上的元数据磁盘上的元件数据包括fsimage镜像文件和editslog编辑日志,因为在磁盘上可以保证持久化存储
- TiDB 替换 HBase 全场景实践指南 ——从架构革新到业务赋能
TiDB 社区干货传送门
tidbhbase架构数据库大数据
作者:数据源的TiDB学习之路原文来源:https://tidb.net/blog/c687d474第一章:HBase的历史使命与技术瓶颈1.1HBase的核心价值与经典场景作为Hadoop生态的核心组件,HBase凭借LSM-Tree存储引擎和Region分片机制,在2010年代成为海量数据存储的标杆。其典型场景包括:日志流处理:支持Kafka每日TB级数据持久化,写入吞吐达百万级QPS(如某头
- 什么是MapReduce
ThisIsClark
大数据mapreduce大数据
MapReduce:大数据处理的经典范式什么是MapReduce?MapReduce是一种编程模型和软件框架,用于大规模数据集(通常大于1TB)的并行处理。它由Google在2004年提出,后来成为ApacheHadoop项目的核心计算引擎。MapReduce通过将计算任务分解为两个主要阶段——Map(映射)和Reduce(归约)——来实现分布式计算。核心思想MapReduce的核心设计原则可以概
- Hive的优化
小王同学mf
hivehadoop数据仓库
一、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- 数据库选型之路YMatrix与Clickhouse对比
星*语
数据库数据仓库时序数据库
背锅我们是被迫的数据库问题‘触发’越来越频繁了,开发、业务人员也一直抱怨数据库不行,作为运维人员,天天各种处理问题,还被其他部门喷,有问题矛头全部指向数据库。刚上任的部门领导整天也是压力山大,内部会议分析了当前的情况,最终解决方案是架构变更。当前的生产系统运行在Mysql上,从开始的保留半年的数据,到现在缩减到保留不足三个月的数据,全量数据实时同步到Hadoop,随着业务的发展,Mysql和Had
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>