- 生成式AI驱动的高分子材料研发与应用
keyan_889
材料人工智能材料科学高分子化学AI航空航天电力工业硕博研究生
近年来,生成式人工智能(如大语言模型)在材料科学领域掀起革命性浪潮,其核心能力(从海量数据中挖掘构效关系、实现分子逆向设计)正在颠覆传统材料研发模式。以聚合物为例,传统依赖实验试错或量子计算的设计方法面临周期长、成本高、多目标优化困难等瓶颈,而生成式AI通过“数据驱动+智能生成”范式,可快速预测材料性能、生成新型分子结构,加速从实验室到产业化的进程。据《Nature》子刊统计,2020年以来基于生
- Python实现微博关键词爬虫
才华是浅浅的耐心
python新浪微博爬虫
1.背景介绍随着社交媒体的广泛应用,微博上的海量数据成为了很多研究和分析的重要信息源。为了方便获取微博的相关内容,本文将介绍如何使用Python编写一个简单的爬虫脚本,从微博中抓取指定关键词的相关数据,并将这些数据保存为Excel文件。本文将以关键词“樊振东”为例,展示从微博抓取该关键词相关数据的全过程。废话不多说,先上结果图。2.项目实现思路该爬虫通过向微博的搜索接口发送HTTP请求,获取与指定
- MySQL海量数据深度分页优化——后端开发
技术征途者
mysql数据库
在后端开发中,当面对MySQL数据库中包含千万级别的数据,并需要进行深度分页查询时,需要考虑优化的问题。在本文中,我们将探讨如何有效地优化MySQL数据库的深度分页查询,以提高查询性能和响应速度。使用索引优化查询索引在数据库查询中起着至关重要的作用。在处理海量数据时,为需要进行深度分页的字段创建合适的索引是提高查询性能的关键。通常情况下,使用主键或唯一键作为排序字段,并为需要筛选的字段和排序字段创
- 深度解析大模型推理框架:原理、应用与实践
百度_开发者中心
人工智能大模型自然语言处理
在当今数据驱动的时代,大模型推理框架已经成为人工智能领域的重要支柱。本文将通过简明扼要、清晰易懂的方式,带领读者深入了解大模型推理框架的原理、应用领域和实践经验,帮助读者更好地掌握这一技术,并在实际工作中发挥其价值。一、大模型推理框架简介大模型推理框架是指一种基于深度学习技术的推理框架,主要用于解决大规模数据集下的复杂问题。该框架通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分析
- 大模型推理框架:从理论到实践的全面解析
百度_开发者中心
人工智能大模型自然语言处理
在数据驱动的时代,深度学习技术已经渗透到各个行业,从图像识别到自然语言处理,从推荐系统到智能客服,其应用无处不在。然而,深度学习模型的训练和推理过程往往涉及大量数据和复杂计算,传统的计算框架难以满足需求。因此,大模型推理框架应运而生,成为解决这一问题的关键。一、大模型推理框架基本概念大模型推理框架是一种基于深度学习技术的推理框架,它通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分
- 揭秘时空大数据:详细介绍、真实应用场景和数据示例解析
陈书予
GIS开发(时空大数据)前端大数据python时序数据库
时空大数据(SpatialBigData)是指利用空间环境和时间环境信息,以及数字技术,从多种来源获取的海量、动态的、多维的数据,对空间环境和时间环境进行实时监测,并基于复杂的数据分析和挖掘,获取有价值的信息。时空大数据示例:1)社会网络数据:Twitter、Facebook、Instagram等社交媒体上的海量数据,可以通过时间、空间、主题等来提取有价值的信息。2)遥感图像数据:通过遥感技术从卫
- 【赵渝强老师】达梦数据库MPP集群的架构
数据库信创
为了支持海量数据存储和处理等方面的需求,为高端数据仓库提供解决方案,达梦数据库提供了大规模并行处理MPP架构,以极低的成本代价,提供高性能的并行计算。通过使用MPP可以解决以下问题:需要较高的系统性能支持以支持大量的复杂查询操作硬件束缚对数据库响应能力的影响降低数据库成本视频讲解如下:https://www.bilibili.com/video/BV1dBftYoEkk/?aid=11386961
- AI 大模型应用数据中心的数据清洗工具
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
1.背景介绍在人工智能大模型应用的浪潮中,数据清洗作为数据预处理的重要环节,对于提升模型性能和可靠性具有至关重要的作用。数据中心作为人工智能模型的运行环境,面临着海量数据流和多样化的数据类型,如何高效、准确地进行数据清洗,成为应用大模型的关键问题之一。本文将详细介绍AI大模型应用数据中心的数据清洗工具,包括核心概念、算法原理、具体操作步骤、应用场景等,旨在为AI大模型的实际应用提供参考。2.核心概
- AI 大模型应用数据中心的数据迁移架构
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、数据迁移、架构设计、迁移策略、性能优化、安全保障1.背景介绍随着人工智能(AI)技术的飞速发展,大规模AI模型的应用日益广泛,涵盖了自然语言处理、计算机视觉、语音识别等多个领域。这些AI模型通常需要海量的数据进行训练和推理,因此数据中心作为AI应用的基础设施,显得尤为重要。然而,随着AI模型规模的不断扩大,数据中心面临着新的挑战:数据规模庞大:AI模型的训练和推理需要海量数据
- StarRocks 主键(Primary Key)深度解析
数据库数据分析主键缓存物化视图
一、StarRocks产品简介StarRocks是一款高性能分析型数据库,专为海量数据的实时分析而设计。作为新一代湖仓(Lakehouse)加速引擎,StarRocks融合了MPP架构和列式存储引擎的优势,能够支持亿级数据秒级查询响应。核心特性:全面的数据模型:支持明细模型、主键模型和聚合模型,满足多样化业务场景实时数据分析:提供高效的数据导入与更新能力,支持实时数据处理分布式架构:采用无共享(S
- 【第11章】亿级电商平台订单系统-海量数据架构设计
cherry5230
架构系统架构架构分布式
1-1本章导学课程导学课程定位:大型系统架构设计核心难点解析核心项目:BToB电商平台订单系统(年交易额200亿级)本章知识体系1.核心概念辨析海量数据vs大数据本质区别解析常见认知误区说明2.方法论框架海量数据处理核心思想分布式计算原理数据分片策略弹性扩展机制3.数据库架构设计方法论体系读写分离模式分库分表策略数据分区方案缓存层设计4.数据处理体系海量数据处理之道批处理与流处理数据压缩技术异步处
- Bigemap Pro:国产数据要素设计软件(DED)正式发布
Bigemap软件
信息可视化
在数字化时代,数据如同新时代的石油,蕴含着巨大的价值。从商业决策到科研探索,从城市规划到环境监测,海量数据的高效处理、精准分析与直观可视化,已成为各行业突破发展瓶颈、实现转型升级的关键所在。历经十年精心打磨与自主研发,BigemapPro这款国产数据要素设计软件犹如一匹黑马,强势闯入数据应用领域。接下来,就让我们一同揭开BigemapPro的神秘面纱,深入探寻其独特魅力,见证它如何重塑基础数据应用
- 智能费用审核平台:赋能千行百业,重塑财务审查新生态
人工智能
在数字经济浪潮席卷全球的今天,企业财务管理正经历着前所未有的变革。传统费用审核模式已难以应对日益复杂的商业环境和海量数据处理需求,低效、高错、高风险成为制约企业发展的桎梏。北京中烟创新科技有限公司(简称:中烟创新)智能费用审核平台应运而生,以技术创新重塑财务审查生态,为企业开启智能化财务管理的新纪元。这不仅是一场技术革新,更是一次管理理念的跃迁——通过AI赋能,实现从"事后纠错"到"事前预防"、从
- 大数据和人工智能概念全面解析
就犯得上方法
一、大数据和人工智能大数据是伴随着信息数据爆炸式增长和网络计算技术迅速发展而兴起的一个新型概念。根据麦肯锡全球研究所的定义,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据能够帮助各行各业的企业从原本毫无价值的海量数据中挖掘出用户的需求,使数据能够从量变到质变,真正产生价值
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- pandas 读取某一单元格的值_07-Pandas Excel新建/读取/填充(一)
扇贝编程
pandas读取某一单元格的值
Excel是微软的经典之作,几乎可以满足我们日常工作的所有需求,但是在处理海量数据时,Excel在效率及性能方面就显得很吃力。正因为Pandas在数据处理方面有着独特的优势,所有掌握pandas库处理excel格式的数据就显得十分必要。目录excel文档新建读取excel文档行列操作空值自动填充行列函数运算excel数据排序excel数据按条件筛选#1.创建excel文件在jupyter中导入pa
- 深度解析ECharts.js:构建现代化数据可视化的利器
斯~内克
WebGLecharts信息可视化前端
引言:数据可视化的新时代挑战在数字化转型浪潮中,数据可视化已成为企业决策和用户体验的关键环节。面对海量数据的呈现需求,传统表格已无法满足用户对直观洞察的渴求。作为百度开源的JavaScript可视化库,ECharts.js凭借其强大的功能和灵活的扩展性,正在成为前端开发者的首选工具。本文将从核心技术解析、实践指南到性能优化,带您全面掌握这个可视化利器。一、ECharts核心技术架构剖析1.1分层渲
- [利用RAG和Elasticsearch打造智能检索系统:详解实现过程]
afTFODguAKBF
elasticsearchjenkins大数据python
引言在信息爆炸的时代,如何高效地从海量数据中提取有用信息成为了一个重要课题。通过结合RAG(Retrieval-AugmentedGeneration)和Elasticsearch,一种强大的信息检索和生成系统可以被实现。本文将详细介绍如何利用RAG和Elasticsearch打造一个智能检索系统。主要内容1.环境设置首先,我们需要设置必要的环境变量来访问Elasticsearch实例和OpenA
- 第七章Solr:企业级搜索应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
第七章Solr:企业级搜索应用1.背景介绍1.1搜索引擎的重要性在当今信息时代,数据量呈指数级增长,海量数据中蕴含着极其宝贵的信息和知识。然而,如何快速、准确地从大数据中检索出所需的信息,一直是企业和组织面临的巨大挑战。传统的数据库查询方式已经无法满足现代搜索需求,因此高效的搜索引擎应运而生。1.2什么是SolrApacheSolr是一个高性能、可扩展、云就绪的企业级搜索平台,由Apache软件基
- Hive函数大全:从核心内置函数到自定义UDF实战指南(附详细案例与总结)
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集hivehadoop数据仓库
目录背景一、Hive函数分类与核心函数表1.内置函数分类2.用户自定义函数(UDF)分类二、常用函数详解与实战案例1.数学函数2.字符串函数3.窗口函数4.自定义UDF实战三、总结与优化建议1.核心总结2.性能优化建议3.常问问题背景Hive作为Hadoop生态中最常用的数据仓库工具,其强大的函数库是高效处理和分析海量数据的核心能力之一。Hive函数分为内置函数和用户自
- 探索高效查找的艺术:解锁二分查找的神奇力量
孤舟独钓寒江
算法java算法开发语言数据结构
在这个信息爆炸的时代,每一秒都有海量数据在我们指尖穿梭。想象一下,若能在眨眼间从这浩瀚数据中精准捕获所需信息,岂不是如同拥有超能力一般?而这,正是“二分查找”——这一算法界璀璨明珠所赋予我们的力量!文章目录跨越数据海洋的极速之旅:揭秘二分查找的非凡魅力!一、超速直击:二分查找,时间的魔术师!二、简约而不简单:算法之美,尽在掌握!三、解密二分查找的魔法公式向未来进发跨越数据海洋的极速之旅:揭秘二分查
- 深入理解MySQL索引:原理、数据结构与优化策略
大骨熬汤
mysql数据结构数据库
深入理解MySQL索引:原理、数据结构与优化策略MySQL是当今最流行的开源关系型数据库管理系统之一,其强大的性能与灵活的可扩展性使得它广泛应用于各种规模的应用程序中。在数据库的日常操作中,索引起着至关重要的作用,能够极大地提高查询效率。然而,索引的设计与使用并不总是那么直观,尤其是在面对复杂查询、海量数据和频繁更新时,如何有效地设计和优化索引成为一项重要的挑战。本文将深入探讨MySQL索引的底层
- Java性能优化:让你的程序飞起来!
杨凯凡
Java高级java
大家好!今天我们来聊聊Java的性能优化。无论是开发高并发的Web应用,还是处理海量数据,性能优化都是Java程序员必须掌握的技能。通过优化代码、调整JVM参数以及使用性能分析工具,我们可以显著提升程序的运行效率。准备好了吗?让我们开始吧!一、代码优化技巧:从细节提升性能代码优化是性能优化的基础。通过改进代码逻辑、减少资源消耗,我们可以显著提升程序的性能。1.减少对象创建频繁创建对象会增加垃圾回收
- 一文搞懂 AI Agent 与 AI 大模型的区别
a小胡哦
人工智能ManusAiagent
在人工智能蓬勃发展的当下,新术语和新技术层出不穷。AIAgent和AI大模型便是其中的“明星”,但不少人对它们的区别感到困惑。今天,我们就以Manus这类AIAgent为例,深入剖析AIAgent与一般AI大模型的不同之处。Manus:Manus定义与核心能力AI大模型AI大模型是基于深度学习架构,通过海量数据训练得到的复杂模型,像GPT-4、文心一言等。它们具备强大的知识储备和语言理解生成能力,
- 海量数据查询加速:Presto、Trino、Apache Arrow
晴天彩虹雨
apache大数据hive数据仓库
1.引言在大数据分析场景下,查询速度往往是影响业务决策效率的关键因素。随着数据量的增长,传统的行存储数据库难以满足低延迟的查询需求,因此,基于列式存储、向量化计算等技术的查询引擎应运而生。本篇文章将深入探讨Presto、Trino、ApacheArrow三种主流的查询优化工具,剖析其核心机制,并通过案例分析展示它们在实际业务中的应用。2.Presto:分布式SQL查询引擎2.1Presto介绍Pr
- 深度学习在医疗影像诊断中的应用与实现
Evaporator Core
#DeepSeek快速入门人工智能#深度学习深度学习人工智能
引言随着人工智能技术的快速发展,深度学习在医疗领域的应用日益广泛,尤其是在医疗影像诊断方面。医疗影像数据量大、复杂度高,传统的诊断方法往往依赖于医生的经验,容易受到主观因素的影响。而深度学习通过自动学习特征,能够从海量数据中提取出有用的信息,辅助医生进行更精准的诊断。本文将探讨深度学习在医疗影像诊断中的应用,并通过代码示例展示如何实现一个简单的医疗影像分类模型。深度学习在医疗影像诊断中的应用1.图
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- MongoDB在Spring商城用户行为记录中的应用
小小初霁
mongodbspring数据库
一、MongoDB的优势灵活Schema用户行为数据结构多变(如点击、搜索、下单),MongoDB的文档模型无需固定字段,适应快速迭代。高吞吐写入支持批量插入,适合高并发场景(如秒杀活动的用户操作记录)。复杂查询优化支持聚合管道、地理空间查询、全文索引,便于多维分析。水平扩展通过分片(Sharding)应对海量数据存储。二、用户行为数据建模1.基础行为记录集合(如user_actions){"us
- DeepSeek选择方向的优势
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能deepseekAIWritePaper机器学习大数据
DeepSeek选择方向的优势在学术研究与论文发表的征程中,DeepSeek凭借其独特的优势,正逐渐成为研究者们不可或缺的得力助手。以下将从多个维度深入剖析DeepSeek选择方向的卓越之处。一、高效的数据处理能力DeepSeek能够迅速处理海量数据,自动识别数据模式,精准定位关键趋势与关联。这一能力使研究者无需耗费大量时间在数据的海洋中苦苦搜寻,从而为论文研究节省宝贵时间,显著提升研究效率。二、
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象