- Java 开发新手必看:Eclipse 基础操作
Java大师兄学大数据AI应用开发
javaeclipsepythonai
Java开发新手必看:Eclipse基础操作关键词:Java开发、Eclipse、基础操作、新手入门、集成开发环境摘要:本文专为Java开发新手打造,详细介绍了Eclipse这一强大集成开发环境的基础操作。从背景知识入手,逐步解释核心概念,深入剖析核心算法原理,通过项目实战展示具体操作,还介绍了实际应用场景、工具资源推荐以及未来发展趋势。旨在帮助新手快速上手Eclipse,开启Java开发之旅。背
- Spring Cloud 服务消息:事件驱动架构
Java大师兄学大数据AI应用开发
架构springcloudjavaai
SpringCloud服务消息:事件驱动架构关键词:SpringCloud、事件驱动架构、消息队列、微服务、异步通信、服务解耦、分布式系统摘要:本文将深入探讨SpringCloud中的事件驱动架构,解释其核心概念、工作原理和实际应用。通过生活化的比喻和详细的代码示例,您将了解如何使用SpringCloudStream等工具构建松耦合、高可用的分布式系统。文章涵盖从基础概念到项目实战的全方位内容,帮
- 【LeetCode】串联所有单词的子串 java
手写从前Code
LeetCode刷题leetcode算法哈希表
给定一个字符串s和一些长度相同的单词words。找出s中恰好可以由words中所有单词串联形成的子串的起始位置。注意子串要与words中的单词完全匹配,中间不能有其他字符,但不需要考虑words中单词串联的顺序。示例1:输入:s="barfoothefoobarman",words=["foo","bar"]输出:[0,9]解释:从索引0和9开始的子串分别是"barfoo"和"foobar"。输出
- 左神算法之矩阵旋转90度
岳轩子
左神算法算法矩阵线性代数
目录旋转矩阵90度(原地操作)1.题目2.解释3.思路4.代码5.总结6.其他旋转矩阵90度(原地操作)1.题目旋转矩阵90度,且只能用有限的几个变量。比如下面的矩阵:12345678910111213141516转换结果为:139511410621511731612842.解释旋转矩阵90度是指将矩阵顺时针旋转90度。观察旋转前后的变化可以发现:原矩阵的第一行变为旋转后矩阵的最后一列原矩阵的第二
- 左神算法之二叉树最大路径和问题
岳轩子
左神算法算法深度优先
二叉树最大路径和问题(Java实现)文章目录二叉树最大路径和问题(Java实现)1.题目描述2.问题解释3.解决思路4.代码实现5.总结1.题目描述给定一棵二叉树,其中每个节点都包含一个整型权值。要求计算从根节点到叶节点的所有路径中,权值和最大的值是多少。2.问题解释必须从根节点出发到叶子节点结束需要遍历所有可能的路径找出所有路径和中最大的那个值叶子节点是指没有子节点的节点3.解决思路采用深度优先
- 矩阵的行列式和逆矩阵的行列式的关系
音程
数学矩阵线性代数
矩阵的行列式和它的逆矩阵的行列式之间有明确的数学关系。我们来详细解释这个关系。✅前提条件:要讨论逆矩阵的行列式,首先必须满足矩阵是可逆的(即:非奇异矩阵),也就是说:矩阵AAA是一个方阵(行数等于列数)且其行列式det(A)≠0\det(A)\neq0det(A)=0核心公式:设AAA是一个n×nn\timesnn×n的可逆矩阵,则其逆矩阵A−1A^{-1}A−1存在,并且满足以下关系:det
- EXILIUM×亚矩云手机:重构Web3虚拟生存法则,开启多端跨链元宇宙自由征途
云云321
智能手机重构web3
在链游与元宇宙赛道竞争加剧的当下,EXILIUM凭借其去中心化开放世界、链上资产确权与玩家自治经济系统,成为Web3原住民逃离“中心化牢笼”的首选之地。然而,其多链交互门槛高、跨设备身份管理复杂、链上安全风险频发等问题,让普通玩家与工作室陷入“自由与风险”的双重困境。亚矩云手机通过云端虚拟化架构、跨链协议兼容与零信任安全体系,为EXILIUM用户提供“链上自由”与“现实可控”的平衡方案,让元宇宙探
- 左神算法之有序二维矩阵中的目标值查找
岳轩子
左神算法算法矩阵线性代数
有序二维矩阵中的目标值查找目录有序二维矩阵中的目标值查找1.题目描述2.问题解释3.解决思路方法一:逐行二分查找(适合行数较少的情况)方法二:利用行列有序特性(最优解)4.代码实现5.总结1.题目描述给定一个元素为非负整数的二维数组matrix,其中:每一行按照从左到右递增的顺序排列每一列按照从上到下递增的顺序排列再给定一个非负整数aim,请判断aim是否存在于matrix中。示例:int[][]
- ss928v100模型的导出、量化和转换
yunken28
python开发语言
1、yolov8导出为onnxfromultralyticsimportYOLOmodel=YOLO("./best.pt")model.export(format="onnx",imgsz=640,dynamic=False,simplify=True,opset=11,batch=1,half=False)以下是model.export()方法各参数的详细解释:format="onnx"指
- Serverless架构下的持续交付实践
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构serverless架构运维ai
Serverless架构下的持续交付实践关键词:Serverless架构、持续交付、DevOps、无服务器计算、自动化部署摘要:本文深入探讨了Serverless架构下的持续交付实践。首先介绍了Serverless架构和持续交付的背景知识,接着解释了相关核心概念及其关系,详细阐述了核心算法原理与操作步骤,通过数学模型加深理解,结合实际项目案例展示了代码实现与解读,探讨了实际应用场景,推荐了相关工具
- Java中的finalize()方法
周杰伦fans
JAVAai学习参考考试学习javapythonjvm
Java中的finalize()方法详解Java的finalize()方法是Object类定义的一个特殊方法,主要用于在对象被垃圾回收器回收之前执行一些清理工作。下面我将从基本概念、工作原理、使用场景、注意事项以及示例代码等方面详细解释这个方法。基本概念finalize()方法是Java中Object类的一个protected方法,每个Java类都隐式继承了这个方法。它的基本语法如下:protec
- Mac 安装使用 Oh-my-zsh(持续更新)
运维阿峰
MacOSmacos
文章目录1.介绍(1)zsh介绍(2)Oh-my-zsh介绍2.oh-my-zsh安装3.配置oh-my-zsh(1)配置主题(2)安装插件zsh官网:https://ohmyz.sh/1.介绍(1)zsh介绍zsh是一种shell(命令解释器),它兼容bash(另一种常见的shell)。zsh相比系统自带的bash有以下几个优点:Tab补全功能强大,在输入命令、命令参数以及文件路径时都能够自动补
- 非关系型数据库在数据库领域的崛起与应用
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库nosql网络ai
非关系型数据库在数据库领域的崛起与应用关键词:非关系型数据库、关系型数据库、崛起原因、应用场景、数据库领域摘要:本文主要探讨了非关系型数据库在数据库领域的崛起与应用。首先介绍了非关系型数据库的背景,包括目的、预期读者等内容。接着详细解释了非关系型数据库、关系型数据库等核心概念,并阐述了它们之间的关系。然后深入讲解了非关系型数据库的核心算法原理、数学模型和公式。通过项目实战展示了非关系型数据库的实际
- AI绘画背后的技术:Stable Diffusion原理详解与实战
AI学长带你学AI
ai
AI绘画背后的技术:StableDiffusion原理详解与实战关键词:StableDiffusion、扩散模型、AI绘画、潜在空间、文本生成图像摘要:本文将带你揭开AI绘画“魔法”背后的核心技术——StableDiffusion的神秘面纱。我们会用“给小学生讲故事”的方式,从生活中的例子出发,逐步解释扩散模型的底层逻辑、StableDiffusion的关键创新,并用Python代码实战演示如何生
- 精准删除:掌握SQL中的DELETE语句
2401_85762266
sqloracle数据库
精准删除:掌握SQL中的DELETE语句在数据库管理中,数据的增删改查(CRUD)是基本操作。其中,DELETE语句是用于从数据库表中删除数据的重要工具。本文将详细解释如何使用SQL的DELETE语句来删除数据,并提供实际的代码示例,帮助你精确控制数据的删除过程。DELETE语句的基本概念DELETE语句用于从数据库表中根据指定条件删除行。正确使用DELETE语句可以确保数据的完整性和准确性。基本
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- 量化价值投资入门:Fama-French三因子模型详解与实战应用
量化价值投资入门到精通
ai
量化价值投资入门:Fama-French三因子模型详解与实战应用关键词:量化投资、Fama-French三因子模型、价值投资、因子投资、资产定价、Python实现、投资组合管理摘要:本文深入解析Fama-French三因子模型的理论基础、数学原理和实际应用。作为现代金融学最重要的资产定价模型之一,三因子模型通过市场因子、规模因子和价值因子解释股票收益差异。我们将从模型起源开始,详细讲解其数学表达和
- Linux 网络设置(ifconfig、route、traceroute、netstat、ss、nslookup、dig、ping状态返回分析)
Linux网络设置一、查看网络1、查看网络接口地址2、查看更改主机名3、查看路由表条目4、查看网络连接情况netstat命令ss命令二、测试网络连接1、测试网络连通性2、跟踪数据包的路由途径3、测试DNS域名解析nslookup命令dig命令三、使用网络配置命令1、临时配置和永久配置的解释2、修改网卡的地址、状态2、添加、删除静态路由与默认路由记录四、修改网络配置文件1、网络接口配置文件2、启用、
- Java核心技术 卷I:基础知识
千灵域
java读书笔记java
第一章Java程序设计概述太简单了,直接略过。1.2Java“白皮书”的关键术语简单性:指相对于C++简单(指针、多重继承等),但设计者也并没有试图清楚C++中所有不适当的特性面向对象:java与C++主要不同在于多重集成,以及接口概念网络技能健壮性安全性体系结构中立可移植性解释性:过去Java解释器可以在任何移植了解释器的机器上执行java字节码,现在使用即使编译器将字节码再翻译成机器码高性能多
- 【实战演练】运维工程师初试必胜指南:解析公司笔试真题与技巧分享
江湖有缘
运维工程师面试专栏运维服务器Linux面试求职
【实战演练】运维工程师初试必胜指南:解析公司笔试真题与技巧分享一、填空题1.第1题:修改网卡IP地址2.第2题:基本文件相关命令解释3.第3题:新建用户4.第4题:设置文件权限5.第5题:路由协议RIP6.第6题:ping命令相关7.第7题:创建目录8.第8题:正则表达式9.第9题:列出文件10.第10题:如何查看系统信息11.第11题:重命名文件12.第12题:修改用户密码13.第13题:如何向
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- 容器挂载传播模式学习
岳来
#容器运维学习k8s容器挂载传播
在容器技术中,挂载传播模式(MountPropagationMode)定义了挂载点在主机和容器之间的传播行为。它决定了当主机或容器中的挂载点发生变化时,这些变化是否会影响到其他挂载点。挂载传播模式在多容器共享挂载、动态挂载更新等场景中非常重要。以下是挂载传播模式的详细解释及其分类:1.挂载传播模式的作用挂载传播模式主要用于控制挂载点的变化如何在主机和容器之间传播。例如:当主机上新增一个挂载点时,是
- 图像检索评价指标:mAP@k、mAP的计算
/home/liupc
11Python/DL/ML
mAP,meanAveragePrecision,平均检索精度.是图像检索领域最最常用的评价指标。一、mAP@k、mAP1.1mAP@k很多地方喜欢用这张图来解释,确实画的很好了,不过略有瑕疵,我稍微修改了一下。这张图是求mAP@10的结果。原图主要存在的问题就是,在前10张图片中,把所有的相似的结果都返回了。这样会给读者造成这样的困扰:没检索出来的但是又相似的图片怎么办??改了之后,就清晰多了。
- 区块链知识总结——POS权益证明
The_Killer.
区块链
背景:pow由于其对资源的消耗而饱受争议。由此引入pos权益证明:posVSpow优缺点:1.节能2.pos是闭环生态,pow是开源生态。pos天然防范了51%攻击解释:pow之下,attacker可以在现实世界中购买矿机,来增加算力以达到51%attack目的,而pos下attacker必须购买更多的加密货币(相当于成为股东),才有发动attack的能力,但此时对币的开发者和早起的矿工其实是受益
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- 【excel使用小知识:绝对定位和相对定位】
在Excel中,绝对定位和相对定位是用于定义单元格引用方式的两种重要机制,直接影响公式在复制或填充时的行为。以下是详细解释和对比:一、相对定位(RelativeReference)定义:相对定位是Excel的默认引用方式,公式中的单元格地址会随着公式复制或填充的位置变化而自动调整。示例:在单元格A1中输入公式:=B1+C1将公式向下填充到A2时,公式会自动变为:=B2+C2将公式向右填充到B1时,
- Apache POI导入导出excel文件实战
小白de成长之路
Java相关apacheexcel前端
文章目录前言技术栈1、引入依赖2、导入代码实现3、导出代码实现3.1、准备导出文件模板3.2、导出代码实现4、代码实现解释5、常见问题前言这两天公司项目业务提出需求,要求在前端上传excel文件然后解析展示,因此写篇文章记录一下实现。技术栈springboot2.6.61、引入依赖maven格式:org.apache.poipoi3.14org.apache.poipoi-ooxml3.142、导
- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 我的第一次开源心跳实录
zzywxc787
制造python开发语言实时互动
提交按钮的荧光在凌晨三点半的黑暗中,像一枚即将引爆的定时炸弹,幽幽地跳动着。我蜷缩在宿舍书桌前,指尖悬在鼠标上方,微微发颤,每一次呼吸都清晰可闻。屏幕上是GitHub那个熟悉又陌生的界面,以及我项目“MiniLisp”仓库里那个名为first-steps的新分支。那里面,藏着我熬了整整两个通宵、反复咀嚼语法书、调试到几乎灵魂出窍才勉强成型的Lisp解释器雏形——一个简陋的eval函数核心。pyth
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla