跟我学Kafka源码Producer分析

本章主要讲解分析Kafka的Producer的业务逻辑,分发逻辑和负载逻辑都在Producer中维护。

 

一、Kafka的总体结构图

跟我学Kafka源码Producer分析_第1张图片

(图片转发)

 

二、Producer源码分析

 

class Producer[K,V](val config: ProducerConfig,
                    private val eventHandler: EventHandler[K,V])  // only for unit testing
  extends Logging {

  private val hasShutdown = new AtomicBoolean(false)
  
  //异步发送队列
  private val queue = new LinkedBlockingQueue[KeyedMessage[K,V]](config.queueBufferingMaxMessages)
  private var sync: Boolean = true
 
  //异步处理线程
  private var producerSendThread: ProducerSendThread[K,V] = null
  private val lock = new Object()

  //根据从配置文件中载入的信息封装成ProducerConfig类
  //判断发送类型是同步,还是异步,如果是异步则启动一个异步处理线程
  config.producerType match {
    case "sync" =>
    case "async" =>
      sync = false
      producerSendThread = 
           new ProducerSendThread[K,V]("ProducerSendThread-" + config.clientId,
                                         queue,
                                         ventHandler,
                                         config.queueBufferingMaxMs,
                                         config.batchNumMessages,
                                         config.clientId)
      producerSendThread.start()
  }

  private val producerTopicStats = ProducerTopicStatsRegistry.getProducerTopicStats(config.clientId)

  KafkaMetricsReporter.startReporters(config.props)
  AppInfo.registerInfo()

  def this(config: ProducerConfig) =
    this(config,
         new DefaultEventHandler[K,V](config,
              Utils.createObject[Partitioner](config.partitionerClass, config.props),
              Utils.createObject[Encoder[V]](config.serializerClass, config.props),
              Utils.createObject[Encoder[K]](config.keySerializerClass, config.props),
              new ProducerPool(config)))

  /**
   * Sends the data, partitioned by key to the topic using either the
   * synchronous or the asynchronous producer
   * @param messages the producer data object that encapsulates the topic, key and message data
   */
  def send(messages: KeyedMessage[K,V]*) {
    lock synchronized {
      if (hasShutdown.get)
        throw new ProducerClosedException
      recordStats(messages)
      sync match {
        case true => eventHandler.handle(messages)
        case false => asyncSend(messages)
      }
    }
  }

  private def recordStats(messages: Seq[KeyedMessage[K,V]]) {
    for (message <- messages) {
      producerTopicStats.getProducerTopicStats(message.topic).messageRate.mark()
      producerTopicStats.getProducerAllTopicsStats.messageRate.mark()
    }
  }

  //异步发送流程
  //将messages异步放到queue里面,等待异步线程获取
  private def asyncSend(messages: Seq[KeyedMessage[K,V]]) {
    for (message <- messages) {
      val added = config.queueEnqueueTimeoutMs match {
        case 0  =>
          queue.offer(message)
        case _  =>
          try {
            config.queueEnqueueTimeoutMs < 0 match {
            case true =>
              queue.put(message)
              true
            case _ =>
              queue.offer(message, config.queueEnqueueTimeoutMs, TimeUnit.MILLISECONDS)
            }
          }
          catch {
            case e: InterruptedException =>
              false
          }
      }
      if(!added) {
        producerTopicStats.getProducerTopicStats(message.topic).droppedMessageRate.mark()
        producerTopicStats.getProducerAllTopicsStats.droppedMessageRate.mark()
        throw new QueueFullException("Event queue is full of unsent messages, could not send event: " + message.toString)
      }else {
        trace("Added to send queue an event: " + message.toString)
        trace("Remaining queue size: " + queue.remainingCapacity)
      }
    }
  }

  /**
   * Close API to close the producer pool connections to all Kafka brokers. Also closes
   * the zookeeper client connection if one exists
   */
  def close() = {
    lock synchronized {
      val canShutdown = hasShutdown.compareAndSet(false, true)
      if(canShutdown) {
        info("Shutting down producer")
        val startTime = System.nanoTime()
        KafkaMetricsGroup.removeAllProducerMetrics(config.clientId)
        if (producerSendThread != null)
          producerSendThread.shutdown
        eventHandler.close
        info("Producer shutdown completed in " + (System.nanoTime() - startTime) / 1000000 + " ms")
      }
    }
  }
}

 

说明:

上面这段代码很多方法我加了中文注释,首先要初始化一系列参数,比如异步消息队列queue,是否是同步sync,异步同步数据线程ProducerSendThread,其实重点就是ProducerSendThread这个类,从队列中取出数据并让kafka.producer.EventHandler将消息发送到broker。这个代码量不多,但是包含了很多内容,通过config.producerType判断是同步发送还是异步发送,每一种发送方式都有相关类支持,下面我们将重点介绍这二种类型。

 

我们发送消息的类是如下格式:

case class KeyedMessage[K, V](val topic: String, val key: K, val partKey: Any, val message: V)

 说明:

 当使用三个参数的构造函数时, partKey会等于key。partKey是用来做partition的,但它不会最当成消息的一部分被存储。

 

1、同步发送

 

private def dispatchSerializedData(messages: Seq[KeyedMessage[K,Message]]): Seq[KeyedMessage[K, Message]] = {
    //分区并且整理方法
    val partitionedDataOpt = partitionAndCollate(messages) 
    partitionedDataOpt match {
      case Some(partitionedData) =>
        val failedProduceRequests = new ArrayBuffer[KeyedMessage[K,Message]]
        try {
          for ((brokerid, messagesPerBrokerMap) <- partitionedData) {
            if (logger.isTraceEnabled)
              messagesPerBrokerMap.foreach(partitionAndEvent =>
                trace("Handling event for Topic: %s, Broker: %d, Partitions: %s".format(partitionAndEvent._1, brokerid, partitionAndEvent._2)))
            val messageSetPerBroker = groupMessagesToSet(messagesPerBrokerMap)

            val failedTopicPartitions = send(brokerid, messageSetPerBroker)
            failedTopicPartitions.foreach(topicPartition => {
              messagesPerBrokerMap.get(topicPartition) match {
                case Some(data) => failedProduceRequests.appendAll(data)
                case None => // nothing
              }
            })
          }
        } catch {
          case t: Throwable => error("Failed to send messages", t)
        }
        failedProduceRequests
      case None => // all produce requests failed
        messages
    }
  }

   说明:

   这个方法主要说了二个重要信息,一个是partitionAndCollate,这个方法主要获取topic、partition和broker的,这个方法很重要,下面会进行分析。另一个重要的方法是groupMessageToSet是要对所发送数据进行压缩设置,如果没有设置压缩,就所有topic对应的消息集都不压缩。如果设置了压缩,并且没有设置对个别topic启用压缩,就对所有topic都使用压缩;否则就只对设置了压缩的topic压缩。

在这个gruopMessageToSet中,并不有具体的压缩逻辑。而是返回一个ByteBufferMessageSet对象。

 

  在我们了解的partitionAndCollate方法之前先来了解一下如下类结构:

  

TopicMetadata -->PartitionMetadata

case class PartitionMetadata(partitionId: Int, 
                             val leader: Option[Broker], 
                             replicas: Seq[Broker], 
                             isr: Seq[Broker] = Seq.empty,
                             errorCode: Short = ErrorMapping.NoError) 
  也就是说,Topic元数据包括了partition元数据,partition元数据中包括了partitionId,leader(leader partition在哪个broker中,备份partition在哪些broker中,以及isr有哪些等等。

 

 

def partitionAndCollate(messages: Seq[KeyedMessage[K,Message]]): Option[Map[Int, collection.mutable.Map[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]] = {
 
    val ret = new HashMap[Int, collection.mutable.Map[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]
    try {
      for (message <- messages) {
        //获取Topic的partition列表
        val topicPartitionsList = getPartitionListForTopic(message)
        //根据hash算法得到消息应该发往哪个分区(partition)
        val partitionIndex = getPartition(message.topic, message.partitionKey, topicPartitionsList)
        
        val brokerPartition = topicPartitionsList(partitionIndex)

        // postpone the failure until the send operation, so that requests for other brokers are handled correctly
        val leaderBrokerId = brokerPartition.leaderBrokerIdOpt.getOrElse(-1)

        var dataPerBroker: HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]] = null
        ret.get(leaderBrokerId) match {
          case Some(element) =>
            dataPerBroker = element.asInstanceOf[HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]
          case None =>
            dataPerBroker = new HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]]
            ret.put(leaderBrokerId, dataPerBroker)
        }

        val topicAndPartition = TopicAndPartition(message.topic, brokerPartition.partitionId)
        var dataPerTopicPartition: ArrayBuffer[KeyedMessage[K,Message]] = null
        dataPerBroker.get(topicAndPartition) match {
          case Some(element) =>
            dataPerTopicPartition = element.asInstanceOf[ArrayBuffer[KeyedMessage[K,Message]]]
          case None =>
            dataPerTopicPartition = new ArrayBuffer[KeyedMessage[K,Message]]
            dataPerBroker.put(topicAndPartition, dataPerTopicPartition)
        }
        dataPerTopicPartition.append(message)
      }
      Some(ret)
    }catch {    // Swallow recoverable exceptions and return None so that they can be retried.
      case ute: UnknownTopicOrPartitionException => warn("Failed to collate messages by topic,partition due to: " + ute.getMessage); None
      case lnae: LeaderNotAvailableException => warn("Failed to collate messages by topic,partition due to: " + lnae.getMessage); None
      case oe: Throwable => error("Failed to collate messages by topic, partition due to: " + oe.getMessage); None
    }
  }

  说明:

  调用partitionAndCollate根据topics的messages进行分组操作,messages分配给dataPerBroker(多个不同的Broker的Map),根据不同Broker调用不同的SyncProducer.send批量发送消息数据,SyncProducer包装了nio网络操作信息。

  partitionAndCollate这个方法的主要作用是:获取所有partitions的leader所在leaderBrokerId(就是在该partiionid的leader分布在哪个broker上),创建一个HashMap>>>,把messages按照brokerId分组组装数据,然后为SyncProducer分别发送消息作准备工作,在确定一个消息应该发给哪个broker之前,要先确定它发给哪个partition,这样才能根据paritionId去找到对应的leader所在的broker。

 

  我们进入getPartitionListForTopic这个方法看一下,这个方法主要是干什么的。

  

private def getPartitionListForTopic(m: KeyedMessage[K,Message]): Seq[PartitionAndLeader] = {
    val topicPartitionsList = brokerPartitionInfo.getBrokerPartitionInfo(m.topic, correlationId.getAndIncrement)
    debug("Broker partitions registered for topic: %s are %s"
      .format(m.topic, topicPartitionsList.map(p => p.partitionId).mkString(",")))
    val totalNumPartitions = topicPartitionsList.length
    if(totalNumPartitions == 0)
      throw new NoBrokersForPartitionException("Partition key = " + m.key)
    topicPartitionsList
  }
   说明:这个方法看上去没什么,主要是getBrokerPartitionInfo这个方法,其中KeyedMessage这个就是我们要发送的消息,返回值是Seq[PartitionAndLeader]。

 

  

def getBrokerPartitionInfo(topic: String, correlationId: Int): Seq[PartitionAndLeader] = {
    debug("Getting broker partition info for topic %s".format(topic))
    // check if the cache has metadata for this topic
    val topicMetadata = topicPartitionInfo.get(topic)
    val metadata: TopicMetadata =
      topicMetadata match {
        case Some(m) => m
        case None =>
          // refresh the topic metadata cache
          updateInfo(Set(topic), correlationId)
          val topicMetadata = topicPartitionInfo.get(topic)
          topicMetadata match {
            case Some(m) => m
            case None => throw new KafkaException("Failed to fetch topic metadata for topic: " + topic)
          }
      }
    val partitionMetadata = metadata.partitionsMetadata
    if(partitionMetadata.size == 0) {
      if(metadata.errorCode != ErrorMapping.NoError) {
        throw new KafkaException(ErrorMapping.exceptionFor(metadata.errorCode))
      } else {
        throw new KafkaException("Topic metadata %s has empty partition metadata and no error code".format(metadata))
      }
    }
    partitionMetadata.map { m =>
      m.leader match {
        case Some(leader) =>
          debug("Partition [%s,%d] has leader %d".format(topic, m.partitionId, leader.id))
          new PartitionAndLeader(topic, m.partitionId, Some(leader.id))
        case None =>
          debug("Partition [%s,%d] does not have a leader yet".format(topic, m.partitionId))
          new PartitionAndLeader(topic, m.partitionId, None)
      }
    }.sortWith((s, t) => s.partitionId < t.partitionId)
  }

  说明:

  这个方法很重要,首先看一下topicPartitionInfo这个对象,这个一个HashMap结构:HashMap[String, TopicMetadata] key是topic名称,value是topic元数据。

  通过这个hash结构获取topic元数据,做match匹配,如果有数据(Some(m))则赋值给metadata,如果没有,也就是None的时候,则通过nio远程连到服务端更新topic信息。

  请看如下流程图:

  跟我学Kafka源码Producer分析_第2张图片

接下来看updateInfo源码如下:

 

def updateInfo(topics: Set[String], correlationId: Int) {
    var topicsMetadata: Seq[TopicMetadata] = Nil
    //将配置参数发送到服务端请求最新元数据
    val topicMetadataResponse = ClientUtils.fetchTopicMetadata(topics, brokers, producerConfig, correlationId)
    //通过response响应信息解析topic元数据和partition元数据,并且放入缓存
    topicsMetadata = topicMetadataResponse.topicsMetadata
    // throw partition specific exception
    topicsMetadata.foreach(tmd =>{
      trace("Metadata for topic %s is %s".format(tmd.topic, tmd))
      if(tmd.errorCode == ErrorMapping.NoError) {
        topicPartitionInfo.put(tmd.topic, tmd)
      } else
        warn("Error while fetching metadata [%s] for topic [%s]: %s ".format(tmd, tmd.topic, ErrorMapping.exceptionFor(tmd.errorCode).getClass))
      tmd.partitionsMetadata.foreach(pmd =>{
        if (pmd.errorCode != ErrorMapping.NoError && pmd.errorCode == ErrorMapping.LeaderNotAvailableCode) {
          warn("Error while fetching metadata %s for topic partition [%s,%d]: [%s]".format(pmd, tmd.topic, pmd.partitionId,
            ErrorMapping.exceptionFor(pmd.errorCode).getClass))
        } // any other error code (e.g. ReplicaNotAvailable) can be ignored since the producer does not need to access the replica and isr metadata
      })
    })
    producerPool.updateProducer(topicsMetadata)
  }
   特别要注意:在ClientUtils.fetchTopicMetadata调用完成后,回到BrokerPartitionInfo.updateInfo继续执行,在其末尾,pool会根据上面取得的最新的metadata建立所有的SyncProducer,即Socket通道producerPool.updateProducer(topicsMetadata),也就是说updateInfo这个方法会定时多次执行,刷新最新的数据到缓存中。
 
private def getPartition(topic: String, key: Any, topicPartitionList: Seq[PartitionAndLeader]): Int = {
    val numPartitions = topicPartitionList.size
    if(numPartitions <= 0)
      throw new UnknownTopicOrPartitionException("Topic " + topic + " doesn't exist")
    val partition =
      if(key == null) {
        // If the key is null, we don't really need a partitioner
        // So we look up in the send partition cache for the topic to decide the target partition
        val id = sendPartitionPerTopicCache.get(topic)
        id match {
          case Some(partitionId) =>
            // directly return the partitionId without checking availability of the leader,
            // since we want to postpone the failure until the send operation anyways
            partitionId
          case None =>
            val availablePartitions = topicPartitionList.filter(_.leaderBrokerIdOpt.isDefined)
            if (availablePartitions.isEmpty)
              throw new LeaderNotAvailableException("No leader for any partition in topic " + topic)
            val index = Utils.abs(Random.nextInt) % availablePartitions.size
            val partitionId = availablePartitions(index).partitionId
            sendPartitionPerTopicCache.put(topic, partitionId)
            partitionId
        }
      } else
        partitioner.partition(key, numPartitions)
    if(partition < 0 || partition >= numPartitions)
      throw new UnknownTopicOrPartitionException("Invalid partition id: " + partition + " for topic " + topic +
        "; Valid values are in the inclusive range of [0, " + (numPartitions-1) + "]")
    trace("Assigning message of topic %s and key %s to a selected partition %d".format(topic, if (key == null) "[none]" else key.toString, partition))
    partition
  }
   说明:先判断一下当前这个topic有多少个partition,在判断key的时候如果为null,则从sendParitionPerTopicCache里取这个topic缓存的partitionId,这个cache是一个Map,如果之前己经使sendPartitionPerTopicCache.put(topic, partitionId)缓存了一个,就直接取出它。如果取不出来,则根据Utils.abs(Random.nextInt) % availablePartitions.size这个公式随机取出一个paritionId并且缓存到sendParitionPerTopicCache中。这就使得sendParitionPerTopicCache里有一个可用的partitionId时,很多消息都会被发送给这同一个partition。
当key不为null时,就用传给handler的partitioner的partition方法,根据partKey和numPartitions来确定这个消息被发给哪个partition。注意这里的numPartition是topicPartitionList.size获取的,有可能会有parition不存在可用的leader。这样的问题将留给send时解决。实际上发生这种情况时,partitionAndCollate会将这个消息分派给brokerId为-1的broker。下面的代码就是计算选择分区的算法公式:key.hashCode%numPartitions。
class DefaultPartitioner(props: VerifiableProperties = null) extends Partitioner {
  private val random = new java.util.Random
  
  def partition(key: Any, numPartitions: Int): Int = {
    Utils.abs(key.hashCode) % numPartitions
  }
}
 
最后要说明的就是发送方法,主要是利用阻塞式IO进行socket通信。
private def send(brokerId: Int, messagesPerTopic: collection.mutable.Map[TopicAndPartition, ByteBufferMessageSet]) = {
    if(brokerId < 0) {
      warn("Failed to send data since partitions %s don't have a leader".format(messagesPerTopic.map(_._1).mkString(",")))
      messagesPerTopic.keys.toSeq
    } else if(messagesPerTopic.size > 0) {
      val currentCorrelationId = correlationId.getAndIncrement
      val producerRequest = new ProducerRequest(currentCorrelationId, config.clientId, config.requestRequiredAcks,
        config.requestTimeoutMs, messagesPerTopic)
      var failedTopicPartitions = Seq.empty[TopicAndPartition]
      try {
        val syncProducer = producerPool.getProducer(brokerId)
        debug("Producer sending messages with correlation id %d for topics %s to broker %d on %s:%d"
          .format(currentCorrelationId, messagesPerTopic.keySet.mkString(","), brokerId, syncProducer.config.host, syncProducer.config.port))
        val response = syncProducer.send(producerRequest)
        debug("Producer sent messages with correlation id %d for topics %s to broker %d on %s:%d"
          .format(currentCorrelationId, messagesPerTopic.keySet.mkString(","), brokerId, syncProducer.config.host, syncProducer.config.port))
        if(response != null) {
          if (response.status.size != producerRequest.data.size)
            throw new KafkaException("Incomplete response (%s) for producer request (%s)".format(response, producerRequest))
          if (logger.isTraceEnabled) {
            val successfullySentData = response.status.filter(_._2.error == ErrorMapping.NoError)
            successfullySentData.foreach(m => messagesPerTopic(m._1).foreach(message =>
              trace("Successfully sent message: %s".format(if(message.message.isNull) null else Utils.readString(message.message.payload)))))
          }
          val failedPartitionsAndStatus = response.status.filter(_._2.error != ErrorMapping.NoError).toSeq
          failedTopicPartitions = failedPartitionsAndStatus.map(partitionStatus => partitionStatus._1)
          if(failedTopicPartitions.size > 0) {
            val errorString = failedPartitionsAndStatus
              .sortWith((p1, p2) => p1._1.topic.compareTo(p2._1.topic) < 0 ||
                                    (p1._1.topic.compareTo(p2._1.topic) == 0 && p1._1.partition < p2._1.partition))
              .map{
                case(topicAndPartition, status) =>
                  topicAndPartition.toString + ": " + ErrorMapping.exceptionFor(status.error).getClass.getName
              }.mkString(",")
            warn("Produce request with correlation id %d failed due to %s".format(currentCorrelationId, errorString))
          }
          failedTopicPartitions
        } else {
          Seq.empty[TopicAndPartition]
        }
      } catch {
        case t: Throwable =>
          warn("Failed to send producer request with correlation id %d to broker %d with data for partitions %s"
            .format(currentCorrelationId, brokerId, messagesPerTopic.map(_._1).mkString(",")), t)
          messagesPerTopic.keys.toSeq
      }
    } else {
      List.empty
    }
  }

  

 

你可能感兴趣的:(跟我学Kafka源码Producer分析)