本章主要讲解分析Kafka的Producer的业务逻辑,分发逻辑和负载逻辑都在Producer中维护。
一、Kafka的总体结构图
(图片转发)
二、Producer源码分析
class Producer[K,V](val config: ProducerConfig, private val eventHandler: EventHandler[K,V]) // only for unit testing extends Logging { private val hasShutdown = new AtomicBoolean(false) //异步发送队列 private val queue = new LinkedBlockingQueue[KeyedMessage[K,V]](config.queueBufferingMaxMessages) private var sync: Boolean = true //异步处理线程 private var producerSendThread: ProducerSendThread[K,V] = null private val lock = new Object() //根据从配置文件中载入的信息封装成ProducerConfig类 //判断发送类型是同步,还是异步,如果是异步则启动一个异步处理线程 config.producerType match { case "sync" => case "async" => sync = false producerSendThread = new ProducerSendThread[K,V]("ProducerSendThread-" + config.clientId, queue, ventHandler, config.queueBufferingMaxMs, config.batchNumMessages, config.clientId) producerSendThread.start() } private val producerTopicStats = ProducerTopicStatsRegistry.getProducerTopicStats(config.clientId) KafkaMetricsReporter.startReporters(config.props) AppInfo.registerInfo() def this(config: ProducerConfig) = this(config, new DefaultEventHandler[K,V](config, Utils.createObject[Partitioner](config.partitionerClass, config.props), Utils.createObject[Encoder[V]](config.serializerClass, config.props), Utils.createObject[Encoder[K]](config.keySerializerClass, config.props), new ProducerPool(config))) /** * Sends the data, partitioned by key to the topic using either the * synchronous or the asynchronous producer * @param messages the producer data object that encapsulates the topic, key and message data */ def send(messages: KeyedMessage[K,V]*) { lock synchronized { if (hasShutdown.get) throw new ProducerClosedException recordStats(messages) sync match { case true => eventHandler.handle(messages) case false => asyncSend(messages) } } } private def recordStats(messages: Seq[KeyedMessage[K,V]]) { for (message <- messages) { producerTopicStats.getProducerTopicStats(message.topic).messageRate.mark() producerTopicStats.getProducerAllTopicsStats.messageRate.mark() } } //异步发送流程 //将messages异步放到queue里面,等待异步线程获取 private def asyncSend(messages: Seq[KeyedMessage[K,V]]) { for (message <- messages) { val added = config.queueEnqueueTimeoutMs match { case 0 => queue.offer(message) case _ => try { config.queueEnqueueTimeoutMs < 0 match { case true => queue.put(message) true case _ => queue.offer(message, config.queueEnqueueTimeoutMs, TimeUnit.MILLISECONDS) } } catch { case e: InterruptedException => false } } if(!added) { producerTopicStats.getProducerTopicStats(message.topic).droppedMessageRate.mark() producerTopicStats.getProducerAllTopicsStats.droppedMessageRate.mark() throw new QueueFullException("Event queue is full of unsent messages, could not send event: " + message.toString) }else { trace("Added to send queue an event: " + message.toString) trace("Remaining queue size: " + queue.remainingCapacity) } } } /** * Close API to close the producer pool connections to all Kafka brokers. Also closes * the zookeeper client connection if one exists */ def close() = { lock synchronized { val canShutdown = hasShutdown.compareAndSet(false, true) if(canShutdown) { info("Shutting down producer") val startTime = System.nanoTime() KafkaMetricsGroup.removeAllProducerMetrics(config.clientId) if (producerSendThread != null) producerSendThread.shutdown eventHandler.close info("Producer shutdown completed in " + (System.nanoTime() - startTime) / 1000000 + " ms") } } } }
说明:
上面这段代码很多方法我加了中文注释,首先要初始化一系列参数,比如异步消息队列queue,是否是同步sync,异步同步数据线程ProducerSendThread,其实重点就是ProducerSendThread这个类,从队列中取出数据并让kafka.producer.EventHandler
将消息发送到broker。这个代码量不多,但是包含了很多内容,通过config.producerType判断是同步发送还是异步发送,每一种发送方式都有相关类支持,下面我们将重点介绍这二种类型。
我们发送消息的类是如下格式:
case class KeyedMessage[K, V](val topic: String, val key: K, val partKey: Any, val message: V)
说明:
当使用三个参数的构造函数时, partKey会等于key。partKey是用来做partition的,但它不会最当成消息的一部分被存储。
1、同步发送
private def dispatchSerializedData(messages: Seq[KeyedMessage[K,Message]]): Seq[KeyedMessage[K, Message]] = { //分区并且整理方法 val partitionedDataOpt = partitionAndCollate(messages) partitionedDataOpt match { case Some(partitionedData) => val failedProduceRequests = new ArrayBuffer[KeyedMessage[K,Message]] try { for ((brokerid, messagesPerBrokerMap) <- partitionedData) { if (logger.isTraceEnabled) messagesPerBrokerMap.foreach(partitionAndEvent => trace("Handling event for Topic: %s, Broker: %d, Partitions: %s".format(partitionAndEvent._1, brokerid, partitionAndEvent._2))) val messageSetPerBroker = groupMessagesToSet(messagesPerBrokerMap) val failedTopicPartitions = send(brokerid, messageSetPerBroker) failedTopicPartitions.foreach(topicPartition => { messagesPerBrokerMap.get(topicPartition) match { case Some(data) => failedProduceRequests.appendAll(data) case None => // nothing } }) } } catch { case t: Throwable => error("Failed to send messages", t) } failedProduceRequests case None => // all produce requests failed messages } }
说明:
这个方法主要说了二个重要信息,一个是partitionAndCollate,这个方法主要获取topic、partition和broker的,这个方法很重要,下面会进行分析。另一个重要的方法是groupMessageToSet是要对所发送数据进行压缩设置,如果没有设置压缩,就所有topic对应的消息集都不压缩。如果设置了压缩,并且没有设置对个别topic启用压缩,就对所有topic都使用压缩;否则就只对设置了压缩的topic压缩。
在这个gruopMessageToSet中,并不有具体的压缩逻辑。而是返回一个ByteBufferMessageSet对象。
在我们了解的partitionAndCollate方法之前先来了解一下如下类结构:
TopicMetadata -->PartitionMetadata case class PartitionMetadata(partitionId: Int, val leader: Option[Broker], replicas: Seq[Broker], isr: Seq[Broker] = Seq.empty, errorCode: Short = ErrorMapping.NoError)也就是说,Topic元数据包括了partition元数据,partition元数据中包括了partitionId,leader(leader partition在哪个broker中,备份partition在哪些broker中,以及isr有哪些等等。
def partitionAndCollate(messages: Seq[KeyedMessage[K,Message]]): Option[Map[Int, collection.mutable.Map[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]] = { val ret = new HashMap[Int, collection.mutable.Map[TopicAndPartition, Seq[KeyedMessage[K,Message]]]] try { for (message <- messages) { //获取Topic的partition列表 val topicPartitionsList = getPartitionListForTopic(message) //根据hash算法得到消息应该发往哪个分区(partition) val partitionIndex = getPartition(message.topic, message.partitionKey, topicPartitionsList) val brokerPartition = topicPartitionsList(partitionIndex) // postpone the failure until the send operation, so that requests for other brokers are handled correctly val leaderBrokerId = brokerPartition.leaderBrokerIdOpt.getOrElse(-1) var dataPerBroker: HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]] = null ret.get(leaderBrokerId) match { case Some(element) => dataPerBroker = element.asInstanceOf[HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]]] case None => dataPerBroker = new HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]] ret.put(leaderBrokerId, dataPerBroker) } val topicAndPartition = TopicAndPartition(message.topic, brokerPartition.partitionId) var dataPerTopicPartition: ArrayBuffer[KeyedMessage[K,Message]] = null dataPerBroker.get(topicAndPartition) match { case Some(element) => dataPerTopicPartition = element.asInstanceOf[ArrayBuffer[KeyedMessage[K,Message]]] case None => dataPerTopicPartition = new ArrayBuffer[KeyedMessage[K,Message]] dataPerBroker.put(topicAndPartition, dataPerTopicPartition) } dataPerTopicPartition.append(message) } Some(ret) }catch { // Swallow recoverable exceptions and return None so that they can be retried. case ute: UnknownTopicOrPartitionException => warn("Failed to collate messages by topic,partition due to: " + ute.getMessage); None case lnae: LeaderNotAvailableException => warn("Failed to collate messages by topic,partition due to: " + lnae.getMessage); None case oe: Throwable => error("Failed to collate messages by topic, partition due to: " + oe.getMessage); None } }
说明:
调用partitionAndCollate根据topics的messages进行分组操作,messages分配给dataPerBroker(多个不同的Broker的Map),根据不同Broker调用不同的SyncProducer.send批量发送消息数据,SyncProducer包装了nio网络操作信息。
partitionAndCollate这个方法的主要作用是:获取所有partitions的leader所在leaderBrokerId(就是在该partiionid的leader分布在哪个broker上),创建一个HashMap>>>,把messages按照brokerId分组组装数据,然后为SyncProducer分别发送消息作准备工作,在确定一个消息应该发给哪个broker之前,要先确定它发给哪个partition,这样才能根据paritionId去找到对应的leader所在的broker。
我们进入getPartitionListForTopic这个方法看一下,这个方法主要是干什么的。
private def getPartitionListForTopic(m: KeyedMessage[K,Message]): Seq[PartitionAndLeader] = { val topicPartitionsList = brokerPartitionInfo.getBrokerPartitionInfo(m.topic, correlationId.getAndIncrement) debug("Broker partitions registered for topic: %s are %s" .format(m.topic, topicPartitionsList.map(p => p.partitionId).mkString(","))) val totalNumPartitions = topicPartitionsList.length if(totalNumPartitions == 0) throw new NoBrokersForPartitionException("Partition key = " + m.key) topicPartitionsList }说明:这个方法看上去没什么,主要是getBrokerPartitionInfo这个方法,其中KeyedMessage这个就是我们要发送的消息,返回值是Seq[PartitionAndLeader]。