- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 梯度下降法
小丹丹的梦想后花园
梯度下降法,最通俗易懂的解释。数据分析挖掘与算法1月7日作者:六尺帐篷链接:https://www.jianshu.com/p/c7e642877b0e本文从一个下山场景开始,提出梯度下降算法的基本思想,接着从数学上解释梯度下降算法原理,最后实现一个简单的梯度下降算法实例!梯度下降的场景假设梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e.找
- 梯度下降算法(Gradient Descent Algorithm)
海棠未语
算法机器学习人工智能python
目录一、梯度下降算法简述二、不同函数梯度下降算法表示1、一元函数2、二元函数3、任意多元函数三、梯度计算四、常见的梯度下降法1、批量梯度下降算法(BatchGradientDescent)2、随机梯度下降算法(StochasticGradientDescent)3、小批量梯度下降(Mini-batchGradientDescent)4、梯度下降算法注意点与调优5、冲量梯度下降算法(Momentum
- 【ShuQiHere】SGD vs BGD:搞清楚它们的区别和适用场景
ShuQiHere
机器学习python人工智能
【ShuQiHere】在机器学习中,优化模型是构建准确预测模型的关键步骤。优化算法帮助我们调整模型的参数,使其更好地拟合训练数据,减少预测误差。在众多优化算法中,梯度下降法是一种最为常见且有效的手段。梯度下降法主要有两种变体:批量梯度下降(BatchGradientDescent,BGD)和随机梯度下降(StochasticGradientDescent,SGD)。这两者在如何计算梯度并更新模型参
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- 人工神经网络通过调整,神经网络怎么调参数
小浣熊的技术
神经网络matlab算法
神经网络算法中,参数的设置或者调整,有什么方法可以采用若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- Logistic 回归
零 度°
机器学习回归数据挖掘人工智能
文章目录1.引言2.Logistic回归概述2.1定义与应用场景2.2与线性回归的区别3.原理与数学基础3.1Sigmoid函数3.2概率解释3.3极大似然估计4.模型建立4.1假设函数4.2成本函数4.3梯度下降法5.正则化5.1正则化的目的与类型5.1.1正则化的目的5.1.2正则化的类型5.2L1和L2正则化5.2.1L1正则化5.2.2L2正则化6.多分类问题6.1一对多(OvA)6.2一
- 神奇的微积分
科学的N次方
人工智能人工智能ai
微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用:优化算法:•梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通过沿着负梯度方向更新权重,可以最小化损失函数并优化模型。•反向传播:在神经网络训练中,微积分的链式法则用于计算整个网络中每个参数对于最终损失函数的影响(偏导数),这一过程就是反向
- 机器学习之梯度下降法直观理解
华农DrLai
算法机器学习人工智能数据挖掘深度学习
形象化举例,由上图所示,假如最开始,我们在一座大山上的某处位置,因为到处都是陌生的不知道下山的路,所以只能摸索着根据直觉,走一步算一步。在此过程中,每走到一个位置的时候,都会求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。不断循环求梯度,就这样一步步地走下去,一直走到我们觉得已经到了山脚。当然这样走下
- 【面经——《广州敏视数码科技有限公司》——图像处理算法工程师-深度学习方向】
有情怀的机械男
面试offer面经
目录笔试HR面专业面——60多分钟主管面反问:笔试8道题——简答题+1道编程苹果、香蕉、梨、菠萝,彩色图像如何进行分类?一辆带车牌的汽车,图像亮度整体呈现偏亮状态,如何去提高图像的清晰度?并设计一个准确定位车牌位置的方案。训练集和测试集各5000张,进行目标检测,写出选择的模型以及设计方案?样本量不足怎么去提高检测的准确性?数据增强梯度下降法的优化算法有哪些,各有什么优缺点?损失函数有哪些?优缺点
- 机器学习中梯度下降法的缺点
华农DrLai
人工智能机器学习逻辑回归深度学习大数据
机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点:1.局部最小值和鞍点局部最小值问题:对于非凸函数,梯度下降法可能会陷入局部最小值,而不是全局最小值。这意味着算法可能找到一个看似最优的点,但实际上在整个参数空间中存在更好的解。鞍点问题:在高维空间中,鞍点(梯度为零,但既非局部最小值也非局部最大值的
- Pytorch-Adam算法解析
肆十二
Pytorch语法pytorch算法人工智能Adam
关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)Hi,兄弟们,这里是肆十二,今天我们来讨论一下深度学习中的Adam优化算法。Adam算法解析Adam算法是一种在深度学习中广泛使用的优化算法,它的名称来源于适应性矩估计(AdaptiveMomentEstimation)。Adam算法结合了两种扩展式的随机梯度下降法的优点,即适应性梯度算
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 如何使用pytorch自动求梯度
浩波的笔记
构建深度学习模型的基本流程就是:搭建计算图,求得损失函数,然后计算损失函数对模型参数的导数,再利用梯度下降法等方法来更新参数。搭建计算图的过程,称为“正向传播”,这个是需要我们自己动手的,因为我们需要设计我们模型的结构。由损失函数求导的过程,称为“反向传播”,求导是件辛苦事儿,所以自动求导基本上是各种深度学习框架的基本功能和最重要的功能之一,PyTorch也不例外。一、pytorch自动求导初步认
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?
woshicver
神经网络算法机器学习人工智能深度学习
链接:https://www.zhihu.com/question/68109802编辑:深度学习与计算机视觉声明:仅做学术分享,侵删作者:夕小瑶https://www.zhihu.com/question/68109802/answer/263503269反对回答区中一部分称“模型收敛于鞍点”的回答。当然也有的大牛可以一针见血,那我就对这个问题多展开一下吧,让鲜血流的更猛烈一些。(害怕.jpg)
- [机器学习]全局最小与局部最小
3points
机器学习机器学习人工智能算法
机器学习中很多任务最终都会转化为优化任务,基于梯度的搜索是使用最广泛的参数寻优方法。梯度法:从某些初始解出发,迭代寻找最优参数值。每次迭代计算误差函数在当前点的梯度,然后根据梯度确定搜索方向:负梯度方向是函数值下降最快的方向,因此梯度下降法就是沿着负梯度方向搜索最优解。若误差函数在当前点梯度为0,则以达到局部最小,参数迭代将停止,显然若误差函数有多个局部最小我们很难保证他就是全局最小。策略:从多个
- 机器学习之局部最优和全局最优
华农DrLai
机器学习人工智能深度学习
(1)局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。(2)函数局部最小点是它的函数值小于或等于附近点的点,但是有可能大于较远距离的点。(3)全局最小点是那种它的函数值小于或等于所有的可行点。面试:你能解释一下梯度下降法及其在寻找全局最优解时的局限性吗?梯度下降法通过迭代沿着目标函数的负梯度方向更新参数,以寻找最小值。局限性:它可能会陷入局部
- datawhale 10月学习——树模型与集成学习:梯度提升树
SheltonXiao
学习集成学习机器学习决策树
前情回顾决策树CART树的实现集成模式两种并行集成的树模型AdaBoost结论速递本次学习了GBDT,首先了解了用于回归的GBDT,将损失使用梯度下降法进行减小;用于分类的GBDT要稍微复杂一些,需要对分类损失进行定义。学习了助教提供的代码。目录前情回顾结论速递1用于回归的GBDT1.1原理1.2代码实现2用于分类的GBDT2.1原理2.2代码实现1用于回归的GBDT1.1原理与AdaBoost类
- 深度学习入门--参数的优化算法
我只钓小鱼
深度学习
1.梯度下降法(GradientDescent)梯度下降法的计算过程就是沿梯度下降的方向求解极小值,也可以沿梯度上升方向求解最大值。假设模型参数为θ\thetaθ,损失函数为J(θ)J(\theta)J(θ),损失函数关于参数的偏导数,也就是梯度为▽θJ(θ)\triangledown_\thetaJ(\theta)▽θJ(θ),学习率为α\alphaα,则使用梯度下降法更新参数为:梯度下降法目前
- 如何学好一项技能,必须具备这三点关键要素
米素文
有一个游泳训练班打出一个口号:我可以用两三个小时教会一个完全不会游泳的人学会游泳。这就是“最速训练程序”。其实核心方法就是,宁可在一个技巧上或者内容上重复10遍以上,也不要用同样时间去尝试10个技巧。如果你想提升你的幽默能力,最直接的方法就是找到国外最顶级的脱口秀十遍十遍的看,你就能吸收到很多知识。如果你只是看一遍,你就只是一个观众,只是觉得好笑,但你不知道为什么好笑。学好一项技能,必须具备三个关
- Python 机器学习 特征预处理
weixin_42098295
python机器学习开发语言
1、缩放特征(FeatureScaling)特征预处理是一个重要的步骤,而特征缩放(FeatureScaling)是其中的一个关键环节。特征缩放通常用于标准化数据集中各个特征的范围,使它们在相似的尺度上。这一步骤对于许多机器学习算法特别重要,尤其是那些基于距离的算法(如K-近邻)和梯度下降法(如线性回归、逻辑回归、神经网络)。1)最小-最大缩放(Min-MaxScaling)最小-最大缩放将所有特
- 机器学习-梯度下降法
小旺不正经
人工智能机器学习人工智能python
不是一个机器学习算法是一种基于搜索的最优化方法作用:最小化一个损失函数梯度上升法:最大化一个效用函数并不是所有函数都有唯一的极值点解决方法:多次运行,随机化初始点梯度下降法的初始点也是一个超参数代码演示importnumpyasnpimportmatplotlib.pyplotaspltplot_x=np.linspace(-1.,6.,141)plot_y=(plot_x-2.5)**2-1.p
- 从 0 开始机器学习 - 手把手用 Python 实现梯度下降法!
登龙zZ
机器学习课程也上了一段时间了,今天就带大家从0开始手把手用Python实现第一个机器学习算法:单变量梯度下降(GradientDescent)!我们从一个小例子开始一步步学习这个经典的算法。一、如何最快下山?在学习算法之前先来看一个日常生活的例子:下山。想象一下你出去旅游爬山,爬到山顶后已经傍晚了,很快太阳就会落山,所以你必须想办法尽快下山,然后去吃海底捞。image那最快的下山方法是什么呢?没错
- 非精线搜索步长规则Armijo规则&Goldstein规则&Wolfe规则
Nie_Xun
算法
非精确线搜索步长规则在数值优化中,线搜索是一种寻找合适步长的策略,以确保在目标函数上获得足够的下降。如最速下降法,拟牛顿法这些常用的优化算法等,其中的线搜索步骤通常使用Armijo规则、Goldstein规则或Wolfe规则等。设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn参数迭代过程:xk+1←xk+αkdkx_
- 神经网络梯度是什么意思,神经网络中梯度下降法
「已注销」
神经网络机器学习深度学习
梯度下降算法是指什么神经网络谷歌人工智能写作项目:小发猫对于非连续目标在深度神经网络的优化过程中哪种梯度下降方法最好还有很多,一步正割算法,拟牛顿算法,量化共轭梯度法,弹性梯度下降法等等rfid。具体可以在MATLAB的help文件训练函数中查看,路径是:NeuralNetworkToolbox>Functions>TrainingFunctions,可以看到各种算法的函数及详细介绍。对于非连续目
- 机器学习_12_梯度下降法、拉格朗日、KKT
少云清
机器学习机器学习人工智能拉格朗日梯度下降KKT
文章目录1梯度下降法1.1导数、梯度1.2梯度下降法1.3梯度下降法的优化思想1.4梯度下降法的调优策略1.5BGD、SGD、MBGD1.5.1BGD、SGD、MBGD的区别2有约束的最优化问题3拉格朗日乘子法3.1拉格朗日乘子法理解3.2对偶问题4KKT条件4.1KKT条件理解4.2KKT公式理解4.3KKT条件总结5高中距离知识回顾1梯度下降法1.1导数、梯度导数:一个函数在某一点的导数描述了
- java移位运算 cpu gpu_ND4J求多元线性回归以及GPU和CPU计算性能对比
zhuyuejituan
java移位运算cpugpu
上一篇博客《梯度下降法求多元线性回归及Java实现》简单了介绍了梯度下降法,并用Java实现了一个梯度下降法求回归的例子。本篇博客,尝试用dl4j的张量运算库nd4j来实现梯度下降法求多元线性回归,并比较GPU和CPU计算的性能差异。一、ND4J简介ND4J是DL4J提供的张量运算库,提供了多种张量运算的封装,以下内容复杂于ND4J官网:ND4J和ND4S是JVM的科学计算库,并为生产环境设计,亦
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc