Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
思路:使用两个指针left和right,分别从两端向中间靠拢。同时,记录left和right曾经到过的最高值。如果当前值并没有超过最高值,则将最高值与当前的差值作为水的量,并将指针加一(right指针是减一)。为了让这个方法有效(无效的情况是,指针后续遇见的bar都不会再高于最高值了,那么这些水根本存不起来),因此我们每次只移动left和right中矮的那一个(如果两者相等,则移动left)。这样,一定能保证最后会碰到比最高值要高的bar(至少是等高),因为我们移动的是矮的那个指针,往前移动肯定最后会遇见另一个高的指针。
1 class Solution { 2 public: 3 int trap(vector<int>& height) { 4 if (height.size() == 0) return 0; 5 int left = 0, right = height.size() - 1, res = 0; 6 int maxleft = height[left], maxright = height[right]; 7 while (left < right) 8 { 9 if (height[left] <= height[right]) 10 { 11 if (height[left] > maxleft) maxleft = height[left]; 12 else res += maxleft - height[left]; 13 left++; 14 } 15 else
16 { 17 if (height[right] > maxright) maxright = height[right]; 18 else res += maxright - height[right]; 19 right--; 20 } 21 } 22 return res; 23 } 24 };
bar height问题:这是Amazon面试中的一道问题。求最高的液面高度。这里只需要把上方的代码修改一下就可以用。就是在res值变更时,若max与当前高度差值非零时,记录下max值,最后最高的max值就是结果。
1 class Solution { 2 public: 3 int trap(vector<int>& height) { 4 if (height.size() == 0) return 0; 5 int left = 0, right = height.size() - 1, res = 0; 6 int maxleft = height[left], maxright = height[right]; 7 while (left < right) 8 { 9 if (height[left] <= height[right]) 10 { 11 if (height[left] > maxleft) maxleft = height[left]; 12 else if (maxleft - height[left] > 0) 13 res = max(res, maxleft); 14 left++; 15 } 16 else
17 { 18 if (height[right] > maxright) maxright = height[right]; 19 else if (maxright - height[right] > 0) 20 res = max(res, maxright); 21 right--; 22 } 23 } 24 return res; 25 } 26 };