《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(二)

第三节中的四个示例。(ps:新开一篇是为了展现对例子的重视。)

3.1用特定于分组的值填充缺失值

对于缺失值的清理工作,可以用dropna进行删除,有时候需要进行填充(或者平滑化)。这时候用的是fillna。

#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt

s = Series(np.random.randn(6))
s[::2] = np.nan
print s,'\n'
print s.fillna(s.mean()),'\n' #不是就地的,是产生一个副本
#假如需要对不同的分组填充不同的值。只需要groupby然后应用fillna即可。
states = ['Ohio','New York','Vermont','Florida','Oregon','Nevada','California','Idaho']
group_key = ['East'] * 4 + ['West'] * 4
data = Series(np.random.randn(8),index = states)
data[['Vermont','Nevada','Idaho']] = np.nan
print data,'\n'
print data.groupby(group_key).mean(),'\n'
#下面用均值填充NA
fill_mean = lambda g:g.fillna(g.mean())
print data.groupby(group_key).apply(fill_mean),'\n'
#当然,可以自己定义填充值:我刚开始就是这么想的,用字典传入值即可
fill_values = {'East':0.5,'West':0.4}
#注意下面的用法:注意g.name 是分组的名称
fill_func = lambda g:g.fillna(fill_values[g.name])
print data.groupby(group_key).apply(fill_func),'\n'
#看一下名字,第一列是分组名,第二列是函数调用后得到的结果,而这个结果也是分组名
p = lambda x: x.name
print data.groupby(group_key).apply(p)
>>>
0         NaN
1   -0.054305
2         NaN
3    1.157882
4         NaN
5   -2.037833

0   -0.311418
1   -0.054305
2   -0.311418
3    1.157882
4   -0.311418
5   -2.037833

Ohio         -0.432424
New York     -0.572222
Vermont            NaN
Florida      -1.938769
Oregon        0.417424
Nevada             NaN
California    1.170923
Idaho              NaN

East   -0.981139
West    0.794173

Ohio         -0.432424
New York     -0.572222
Vermont      -0.981139
Florida      -1.938769
Oregon        0.417424
Nevada        0.794173
California    1.170923
Idaho         0.794173

Ohio         -0.432424
New York     -0.572222
Vermont       0.500000
Florida      -1.938769
Oregon        0.417424
Nevada        0.400000
California    1.170923
Idaho         0.400000

East    East
West    West
[Finished in 1.5s]

3.2随机采样和排列

假如想从一个大数据集中抽样完成蒙特卡洛模拟或其他工作。“抽取”的方式有很多,但是效率是不一样的。一个办法是,选取np.random.permutation(N)的前K个元素。下面是个更有趣的例子:

#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt

#红桃(Hearts)、黑桃(Spades)、梅花(Clubs)、方片(Diamonds)
suits = ['H','S','C','D']
card_val = (range(1,11) + [10] * 3) * 4
#print card_val
base_names = ['A'] + range(2,11) + ['J','K','Q']
cards = []
#注意下面的生成方式,很简洁
#extend将一个列表添加到已有列表中,与append不同
for suit in ['H','S','C','D']:
    cards.extend(str(num) + suit for num in base_names)
print cards,'\n'
deck = Series(card_val,index = cards)
print deck[:13],'\n'
#从排中抽取5张,注意抽取方式,是一种随机选取5个的方式,即先选出一个排列,再从中拿出5个
def draw(deck,n = 5):
    return deck.take(np.random.permutation(len(deck))[:n])
print draw(deck),'\n'
#假如想从每种花色中随机抽取两张。先分组,再对每个组应用draw函数进行抽取
get_suit = lambda card:card[-1]
print deck.groupby(get_suit).apply(draw,2)
#另一种方法
print deck.groupby(get_suit,group_keys = False).apply(draw,2)
>>>
['AH', '2H', '3H', '4H', '5H', '6H', '7H', '8H', '9H', '10H', 'JH', 'KH', 'QH', 'AS', '2S', '3S', '4S', '5S', '6S', '7S', '8S', '9S', '10S', 'JS', 'KS', 'QS', 'AC', '2C', '3C', '4C', '5C', '6C', '7C', '8C', '9C', '10C', 'JC', 'KC', 'QC', 'AD', '2D', '3D', '4D', '5D', '6D', '7D', '8D', '9D', '10D', 'JD', 'KD', 'QD'] 

AH      1
2H      2
3H      3
4H      4
5H      5
6H      6
7H      7
8H      8
9H      9
10H    10
JH     10
KH     10
QH     10

7H      7
10S    10
4H      4
JS     10
6D      6

C  AC      1
   10C    10
D  7D      7
   10D    10
H  6H      6
   10H    10
S  2S      2
   4S      4
6C      6
QC     10
QD     10
10D    10
6H      6
5H      5
7S      7
2S      2
[Finished in 1.3s]

3.3分组加权平均数和相关系数

根据groupby的“拆分-应用-合并”范式。DataFrame的列与列之间或两个Series之间的运算(比如分组加权平均)成为一种标准化作业(有道理)。看下面一个例子:

#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt

df = DataFrame({'category':list('aaaabbbb'),'data':np.random.randn(8),'weights':np.random.randn(8)})
print df,'\n'
#下面以category分组并计算加权平均
grouped = df.groupby('category')
get_wavg = lambda g:np.average(g['data'],weights = g['weights'])
print grouped.apply(get_wavg),'\n'
#看下面的例子
close_px = pd.read_csv('E:\\stock_px.csv',parse_dates = True,index_col = 0)
print close_px[-4:],'\n'
#下面做一个比较有趣的任务:计算一个由日收益率(通过百分比计算)与SPX之间的年度相关系数
#组成的DataFrame,下面是一个实现办法,下面的pct_change是计算每列下一个数值相对于上一个值的百分比变化,所以,第一个肯定为NaN
rets = close_px.pct_change().dropna()
#print rets[-4:]
spx_corr = lambda x:x.corrwith(x['SPX'])
#注意下面隐式的函数,作者好高明
by_year = rets.groupby(lambda x:x.year)
#对每一小块的所有列和SPX列计算相关系数
print by_year.apply(spx_corr),'\n'
#当然,还可以计算列与列之间的相关系数
print by_year.apply(lambda g:g['AAPL'].corr(g['MSFT']))
>>>
  category      data   weights
0        a  0.287761 -1.015669
1        a -0.751835 -1.439559
2        a -0.879771  1.111463
3        a  2.252593 -0.482481
4        b  0.431053 -1.250926
5        b  0.240771 -1.259915
6        b  0.090695 -1.024591
7        b -0.602894  2.140364

category
a           0.697948
b           1.595552

              AAPL   MSFT    XOM      SPX
2011-10-11  400.29  27.00  76.27  1195.54
2011-10-12  402.19  26.96  77.16  1207.25
2011-10-13  408.43  27.18  76.37  1203.66
2011-10-14  422.00  27.27  78.11  1224.58

          AAPL      MSFT       XOM  SPX
2003  0.541124  0.745174  0.661265    1
2004  0.374283  0.588531  0.557742    1
2005  0.467540  0.562374  0.631010    1
2006  0.428267  0.406126  0.518514    1
2007  0.508118  0.658770  0.786264    1
2008  0.681434  0.804626  0.828303    1
2009  0.707103  0.654902  0.797921    1
2010  0.710105  0.730118  0.839057    1
2011  0.691931  0.800996  0.859975    1

2003    0.480868
2004    0.259024
2005    0.300093
2006    0.161735
2007    0.417738
2008    0.611901
2009    0.432738
2010    0.571946
2011    0.581987
[Finished in 1.7s]

3.4面向分组的线性回归

可以利用groupby进行更复杂的分析,只要返回的是pandas对象或者标量值即可。例如,定义下面的函数对每块进行最小二乘回归。

#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
import statsmodels.api as sm

close_px = pd.read_csv('E:\\stock_px.csv',parse_dates = True,index_col = 0)
rets = close_px.pct_change().dropna()
#注意下面隐式的函数,作者好高明
by_year = rets.groupby(lambda x:x.year)

def regress(data,yvar,xvars):
    Y = data[yvar]
    X = data[xvars]
    X['intercept'] = 1
    result = sm.OLS(Y,X).fit()
    return result.params
print by_year.apply(regress,'AAPL',['SPX'])

4、透视表和交叉表

透视表很有用,能够比较轻松的完成groupby和更复杂的工作,DataFrame有pivot_table方法,顶级函数pands.pivot_table。除此之外,margins = True添加分项小计。

#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame

tips = pd.read_csv('E:\\tips.csv')
tips['tip_pct'] = tips['tip'] / tips['total_bill']
print tips.head(),'\n'
#透视表默认的函数是mean
print tips.pivot_table(rows = ['sex','smoker']),'\n'  #这样的工作用groupby也能轻易完成
#print tips.groupby(['sex','smoker']).mean()
#现在用tip_pct和size进行聚合,而且想根据day进行分组,将smoker放在列上,把day放到行上
print tips.pivot_table(['tip_pct','size'],rows = ['sex','day'],cols = 'smoker'),'\n' #这个用groupby就比较费力了 
#可以添加选项  margins = True添加分项小计。这将会添加All行和列,这里的all行或者列将不考虑差别,算整体的值
print tips.pivot_table(['tip_pct','size'],rows = ['sex','day'],cols = 'smoker',margins = True),'\n'
#想应用别的函数,只要将函数传入aggfunc即可
print tips.pivot_table('tip_pct',rows = ['sex','smoker'],cols = 'day',aggfunc = len,margins = True),'\n'
#如果出现NA,经常出现,可以设置一个fill_value
print tips.pivot_table('size',rows = ['time','sex','smoker'],cols = 'day',aggfunc = 'sum',fill_value = 0)
>>>
   total_bill   tip     sex smoker  day    time  size   tip_pct
0       16.99  1.01  Female  False  Sun  Dinner     2  0.059447
1       10.34  1.66    Male  False  Sun  Dinner     3  0.160542
2       21.01  3.50    Male  False  Sun  Dinner     3  0.166587
3       23.68  3.31    Male  False  Sun  Dinner     2  0.139780
4       24.59  3.61  Female  False  Sun  Dinner     4  0.146808

                   size       tip   tip_pct  total_bill
sex    smoker                                         
Female False   2.592593  2.773519  0.156921   18.105185
       True    2.242424  2.931515  0.182150   17.977879
Male   False   2.711340  3.113402  0.160669   19.791237
       True    2.500000  3.051167  0.152771   22.284500

              tip_pct                size         
smoker          False     True      False     True
sex    day                                        
Female Fri   0.165296  0.209129  2.500000  2.000000
       Sat   0.147993  0.163817  2.307692  2.200000
       Sun   0.165710  0.237075  3.071429  2.500000
       Thur  0.155971  0.163073  2.480000  2.428571
Male   Fri   0.138005  0.144730  2.000000  2.125000
       Sat   0.162132  0.139067  2.656250  2.629630
       Sun   0.158291  0.173964  2.883721  2.600000
       Thur  0.165706  0.164417  2.500000  2.300000

                 size                       tip_pct                   
smoker          False      True       All     False      True       All
sex    day                                                            
Female Fri   2.500000  2.000000  2.111111  0.165296  0.209129  0.199388
       Sat   2.307692  2.200000  2.250000  0.147993  0.163817  0.156470
       Sun   3.071429  2.500000  2.944444  0.165710  0.237075  0.181569
       Thur  2.480000  2.428571  2.468750  0.155971  0.163073  0.157525
Male   Fri   2.000000  2.125000  2.100000  0.138005  0.144730  0.143385
       Sat   2.656250  2.629630  2.644068  0.162132  0.139067  0.151577
       Sun   2.883721  2.600000  2.810345  0.158291  0.173964  0.162344
       Thur  2.500000  2.300000  2.433333  0.165706  0.164417  0.165276
All          2.668874  2.408602  2.569672  0.159328  0.163196  0.160803

day            Fri  Sat  Sun  Thur  All
sex    smoker                         
Female False     2   13   14    25   54
       True      7   15    4     7   33
Male   False     2   32   43    20   97
       True      8   27   15    10   60
All             19   87   76    62  244

day                   Fri  Sat  Sun  Thur
time   sex    smoker                    
Dinner Female False     2   30   43     2
              True      8   33   10     0
       Male   False     4   85  124     0
              True     12   71   39     0
Lunch  Female False     3    0    0    60
              True      6    0    0    17
       Male   False     0    0    0    50
              True      5    0    0    23
[Finished in 0.8s]

pivot_table的参数,已经全部用到过:

《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(二)_第1张图片

交叉表:crosstab

crosstab是一种计算分组频率(显然应该是频数)的特殊透视表,下面的例子很典型。也就是说这是生成列联表的函数。

#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame

tips = pd.read_csv('E:\\tips.csv')
tips['tip_pct'] = tips['tip'] / tips['total_bill']

data = DataFrame({'Sample':range(1,11,1),'Gender':['F','M','F','M','M','M','F','F','M','F'],'Handedness':['R','L','R','R','L','R','R','L','R','R']})
print pd.crosstab(data.Gender,data.Handedness,margins = True),'\n'
#crosstab的前两个参数可以是数组、Series或数组列表
print pd.crosstab([tips.time,tips.day],tips.smoker,margins = True),'\n'
>>>
Handedness  L  R  All
Gender              
F           1  4    5
M           2  3    5
All         3  7   10

smoker       False  True  All
time   day                  
Dinner Fri       3     9   12
       Sat      45    42   87
       Sun      57    19   76
       Thur      1     0    1
Lunch  Fri       1     6    7
       Thur     44    17   61
All            151    93  244

[Finished in 0.7s]

5、2012联邦选举委员会数据库

这是一个例子,美国选举委员会有关政治精选竞选方面的数据。

  • 根据职业和雇主统计赞助信息
#-*- encoding:utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame

#加载数据,150M+,用时8.7s
fec = pd.read_csv('E:\\P00000001-ALL.csv')
print fec,'\n'
print fec.ix[123456],'\n'
#下面介绍几种不同的分析方法
#通过unique,你可以获取全部的候选人名单
unique_cands = fec.cand_nm.unique()
print unique_cands,'\n'
#下面将候选人和党派对应起来,额,写了半天,奥巴马是Democrat(民主党),其他人都是共和党……
parties = {'Bachmann, Michelle':'Republican',
'Cain, Herman':'Republican',
'Gingrich, Newt':'Republican',
'Huntsman, Jon':'Republican',
'Johnson, Gary Earl':'Republican',
'McCotter, Thaddeus G':'Republican',
'Obama, Barack':'Democrat',
'Paul, Ron':'Republican',
'Pawlenty, Timothy':'Republican',
'Perry, Rick':'Republican',
"Roemer, Charles E. 'Buddy' III":'Republican',
'Romney, Mitt':'Republican',
'Santorum, Rick':'Republican'}
#为其添加新列
fec['party'] = fec.cand_nm.map(parties)
print fec['party'].value_counts(),'\n'
#注意,这份数据既包括赞助也包括退款
print (fec.contb_receipt_amt > 0).value_counts(),'\n'
#为了简便,这里将只研究正出资额的部分
fec = fec[fec.contb_receipt_amt > 0]
#专门准备两个子集盛放奥巴马和Mitt Romney
fec_mrbo = fec[fec.cand_nm.isin(['Obama, Barack','Romney, Mitt'])]
#根据职业和雇主统计赞助信息,例如律师倾向于赞助民主党,企业主倾向于自主共和党
#下面看一下职业
print fec.contbr_occupation.value_counts()[:10],'\n'
#下面将这些职业进行一些处理(将一个职业信息映射到另一个)
occ_mapping = {
    'INFORMATION REQUESTED PER BEST EFFORTS':'NOT PROVIDED',
    'INFORMATION REQUESTED':'NOT PROVIDED',
    'INFORMATION REQUESTED (BEST EFFORTS)':'NOT PROVIDED',
    'C.E.O':'CEO'
}
#下面用了一个dict.get,下面的get第一个x是dict的键,映射到返回对应的key,第二个是没有映射到返回的内容,如果没有提供映射的话,返回x
f = lambda x:occ_mapping.get(x,x)
fec.contbr_occupation = fec.contbr_occupation.map(f)
#对雇主的信息也这样处理一下
emp_mapping = {
    'INFORMATION REQUESTED PER BEST EFFORTS':'NOT PROVIDED',
    'INFORMATION REQUESTED':'NOT PROVIDED',
    'SELF':'SELF-EMPLOYED',
    'SELF EMPLOYED':'SELF-EMPLOYED'
}
f = lambda x:emp_mapping.get(x,x)
fec.contbr_employer = fec.contbr_employer.map(f)
#下面可以通过pivot_table根据党派和职业对数据进行聚合,然后过滤掉出资总额不足200万美元的数据
by_occupation = fec.pivot_table('contb_receipt_amt',rows = 'contbr_occupation',cols = 'party',aggfunc = sum)
print by_occupation.head(),'\n'  #这个数据一定要看一下
over_2mm = by_occupation[by_occupation.sum(1) > 2000000]
print over_2mm
over_2mm.plot(kind = 'barh')
plt.show()
#你可能还想了解一下对OBAMA和ROMNEY总出资额最高的职业和企业,想法是先分组,然后再选取
def get_top_amounts(group,key,n = 5):
    totals = group.groupby(key)['contb_receipt_amt'].sum()
    return totals.order(ascending = False)[:n]  #作者书上写错了
grouped = fec_mrbo.groupby('cand_nm')
#下面的语句是说,grouped对象可以被进一步groupby
print grouped.apply(get_top_amounts,'contbr_occupation',n = 7),'\n'
print fec_mrbo.groupby(['cand_nm','contbr_occupation'])['contb_receipt_amt'].sum(),'\n' #不知道这里为啥不对……,为什么跟前面的语句结果不一样?……
#print fec_mrbo.pivot_table('contb_receipt_amt',rows = ['cand_nm','contbr_occupation'],aggfunc = 'sum')
print grouped.apply(get_top_amounts,'contbr_employer',n = 10)
>>>
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1001731 entries, 0 to 1001730
Data columns:
cmte_id              1001731  non-null values
cand_id              1001731  non-null values
cand_nm              1001731  non-null values
contbr_nm            1001731  non-null values
contbr_city          1001716  non-null values
contbr_st            1001727  non-null values
contbr_zip           1001620  non-null values
contbr_employer      994314  non-null values
contbr_occupation    994433  non-null values
contb_receipt_amt    1001731  non-null values
contb_receipt_dt     1001731  non-null values
receipt_desc         14166  non-null values
memo_cd              92482  non-null values
memo_text            97770  non-null values
form_tp              1001731  non-null values
file_num             1001731  non-null values
dtypes: float64(1), int64(1), object(14)

cmte_id                             C00431445
cand_id                             P80003338
cand_nm                         Obama, Barack
contbr_nm                         ELLMAN, IRA
contbr_city                             TEMPE
contbr_st                                  AZ
contbr_zip                          852816719
contbr_employer      ARIZONA STATE UNIVERSITY
contbr_occupation                   PROFESSOR
contb_receipt_amt                          50
contb_receipt_dt                    01-DEC-11
receipt_desc                              NaN
memo_cd                                   NaN
memo_text                                 NaN
form_tp                                 SA17A
file_num                               772372
Name: 123456

[Bachmann, Michelle Romney, Mitt Obama, Barack
Roemer, Charles E. 'Buddy' III Pawlenty, Timothy Johnson, Gary Earl
Paul, Ron Santorum, Rick Cain, Herman Gingrich, Newt McCotter, Thaddeus G
Huntsman, Jon Perry, Rick]

Democrat      593746
Republican    407985

True     991475
False     10256

RETIRED                                   233990
INFORMATION REQUESTED                      35107
ATTORNEY                                   34286
HOMEMAKER                                  29931
PHYSICIAN                                  23432
INFORMATION REQUESTED PER BEST EFFORTS     21138
ENGINEER                                   14334
TEACHER                                    13990
CONSULTANT                                 13273
PROFESSOR                                  12555

party                                Democrat  Republican
contbr_occupation                                       
   MIXED-MEDIA ARTIST / STORYTELLER       100         NaN
AREA VICE PRESIDENT                      250         NaN
RESEARCH ASSOCIATE                       100         NaN
TEACHER                                  500         NaN
THERAPIST                               3900         NaN

party                 Democrat       Republican
contbr_occupation                             
ATTORNEY           11141982.97   7477194.430000
C.E.O.                 1690.00   2592983.110000
CEO                 2074284.79   1640758.410000
CONSULTANT          2459912.71   2544725.450000
ENGINEER             951525.55   1818373.700000
EXECUTIVE           1355161.05   4138850.090000
HOMEMAKER           4248875.80  13634275.780000
INVESTOR             884133.00   2431768.920000
LAWYER              3160478.87    391224.320000
MANAGER              762883.22   1444532.370000
NOT PROVIDED        4866973.96  20565473.010000
OWNER               1001567.36   2408286.920000
PHYSICIAN           3735124.94   3594320.240000
PRESIDENT           1878509.95   4720923.760000
PROFESSOR           2165071.08    296702.730000
REAL ESTATE          528902.09   1625902.250000
RETIRED            25305116.38  23561244.489999
SELF-EMPLOYED        672393.40   1640252.540000
cand_nm        contbr_occupation                    
Obama, Barack  RETIRED                                   25305116.38
               ATTORNEY                                  11141982.97
               INFORMATION REQUESTED                      4866973.96
               HOMEMAKER                                  4248875.80
               PHYSICIAN                                  3735124.94
               LAWYER                                     3160478.87
               CONSULTANT                                 2459912.71
Romney, Mitt   RETIRED                                   11508473.59
               INFORMATION REQUESTED PER BEST EFFORTS    11396894.84
               HOMEMAKER                                  8147446.22
               ATTORNEY                                   5364718.82
               PRESIDENT                                  2491244.89
               EXECUTIVE                                  2300947.03
               C.E.O.                                     1968386.11
Name: contb_receipt_amt

cand_nm        contbr_occupation                 
Obama, Barack     MIXED-MEDIA ARTIST / STORYTELLER     100
                AREA VICE PRESIDENT                    250
                RESEARCH ASSOCIATE                     100
                TEACHER                                500
                THERAPIST                             3900
               -                                      5000
               .NET PROGRAMMER                         481
               07/13/1972                               98
               12K ADVOCATE                            150
               13D                                     721
               1SG RETIRED                             210
               1ST ASSISTANT DIRECTOR 2ND UNIT          35
               1ST GRADE TEACHER                       435
               1ST VP WEALTH MANAGEMENT                559
               22ND CENTURY REALTY                     500
...
Romney, Mitt  WRITER/ MUSIC PRODUCER      100
              WRITER/AUTHOR              2500
              WRITER/EDITOR               350
              WRITER/INVESTOR              25
              WRITER/MEDIA PRODUCER       300
              WRITER/PRODUCER             225
              WRITER/TRAINER               35
              WUNDERMAN                  1000
              YACHT BUILDER              2500
              YACHT CAPTAIN               500
              YACHT CONSTRUCTION         2500
              YOGA INSTRUCTOR             500
              YOGA TEACHER               2500
              YOUTH CARE WORKER            25
              YOUTH OUTREACH DIRECTOR    1000
Name: contb_receipt_amt, Length: 35991

cand_nm        contbr_employer                      
Obama, Barack  RETIRED                                   22694358.85
               SELF-EMPLOYED                             17080985.96
               NOT EMPLOYED                               8586308.70
               INFORMATION REQUESTED                      5053480.37
               HOMEMAKER                                  2605408.54
               SELF                                       1076531.20
               SELF EMPLOYED                               469290.00
               STUDENT                                     318831.45
               VOLUNTEER                                   257104.00
               MICROSOFT                                   215585.36
Romney, Mitt   INFORMATION REQUESTED PER BEST EFFORTS    12059527.24
               RETIRED                                   11506225.71
               HOMEMAKER                                  8147196.22
               SELF-EMPLOYED                              7409860.98
               STUDENT                                     496490.94
               CREDIT SUISSE                               281150.00
               MORGAN STANLEY                              267266.00
               GOLDMAN SACH & CO.                          238250.00
               BARCLAYS CAPITAL                            162750.00
               H.I.G. CAPITAL                              139500.00
Name: contb_receipt_amt
[Finished in 16.6s]

下面是上面代码中的图:

《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(二)_第2张图片

  • 对出资额分组

还可以对该数据做另一种非常实用的分析:利用cut将数据分散到各个面元中。

#部分代码
bins = np.array([0,1,10,100,1000,10000,100000,1000000,10000000])
labels = pd.cut(fec_mrbo.contb_receipt_amt,bins)
print labels,'\n'
#然后根据候选人姓名以及面元标签对数据进行分组
grouped = fec_mrbo.groupby(['cand_nm',labels])
print grouped.size().unstack(0),'\n'  #可以看出两个候选人不同面元捐款的数量
#还可以对出资额求和并在面元内规格化,以便图形化显示两位候选人各种赞助的比例
bucket_sums = grouped.contb_receipt_amt.sum().unstack(0)
print bucket_sums,'\n'
normed_sums = bucket_sums.div(bucket_sums.sum(axis = 1),axis = 0)
print normed_sums,'\n'
#排除最大的两个面元并作图:
normed_sums[:-2].plot(kind = 'barh',stacked = True)
plt.show()
>>>
Categorical: contb_receipt_amt
array([(10, 100], (100, 1000], (100, 1000], ..., (1, 10], (10, 100],
       (100, 1000]], dtype=object)
Levels (8): Index([(0, 1], (1, 10], (10, 100], (100, 1000],
                   (1000, 10000], (10000, 100000], (100000, 1000000],
                   (1000000, 10000000]], dtype=object)

cand_nm              Obama, Barack  Romney, Mitt
contb_receipt_amt                              
(0, 1]                         493            77
(1, 10]                      40070          3681
(10, 100]                   372280         31853
(100, 1000]                 153991         43357
(1000, 10000]                22284         26186
(10000, 100000]                  2             1
(100000, 1000000]                3           NaN
(1000000, 10000000]              4           NaN

cand_nm              Obama, Barack  Romney, Mitt
contb_receipt_amt                              
(0, 1]                      318.24         77.00
(1, 10]                  337267.62      29819.66
(10, 100]              20288981.41    1987783.76
(100, 1000]            54798531.46   22363381.69
(1000, 10000]          51753705.67   63942145.42
(10000, 100000]           59100.00      12700.00
(100000, 1000000]       1490683.08           NaN
(1000000, 10000000]     7148839.76           NaN

cand_nm              Obama, Barack  Romney, Mitt
contb_receipt_amt                              
(0, 1]                    0.805182      0.194818
(1, 10]                   0.918767      0.081233
(10, 100]                 0.910769      0.089231
(100, 1000]               0.710176      0.289824
(1000, 10000]             0.447326      0.552674
(10000, 100000]           0.823120      0.176880
(100000, 1000000]         1.000000           NaN
(1000000, 10000000]       1.000000           NaN

[Finished in 221.9s]

    下面是最后的图形:

《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(二)_第3张图片

  • 根据州统计赞助信息

这部分由于地图模块装不上就先放一下。

#部分代码
grouped = fec_mrbo.groupby(['cand_nm','contbr_st'])
totals = grouped.contb_receipt_amt.sum().unstack(0).fillna(0)
totals = totals[totals.sum(1) > 100000]
print totals[:10],'\n'
percent = totals.div(totals.sum(1),axis = 0)
print percent[:10]
>>>
cand_nm    Obama, Barack  Romney, Mitt
contbr_st                            
AK             281840.15      86204.24
AL             543123.48     527303.51
AR             359247.28     105556.00
AZ            1506476.98    1888436.23
CA           23824984.24   11237636.60
CO            2132429.49    1506714.12
CT            2068291.26    3499475.45
DC            4373538.80    1025137.50
DE             336669.14      82712.00
FL            7318178.58    8338458.81

cand_nm    Obama, Barack  Romney, Mitt
contbr_st                            
AK              0.765778      0.234222
AL              0.507390      0.492610
AR              0.772902      0.227098
AZ              0.443745      0.556255
CA              0.679498      0.320502
CO              0.585970      0.414030
CT              0.371476      0.628524
DC              0.810113      0.189887
DE              0.802776      0.197224
FL              0.467417      0.532583
[Finished in 18.1s]

你可能感兴趣的:(《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算(二))