ML 基础知识

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P improves with experience E

ML Algorithms Overview

  • Supervised learning    <= "teach" program
    • Given "right answers" data, then predict 
    • Regression: predict
  • Unsupervisedlearning <= let it learn by itself
    • Given data without labels, then find some structures in the data
  • Others: reinforcement learning, recommender systems 

     ML 基础知识_第1张图片ML 基础知识_第2张图片

 

Regression Overivew 

To get the prediction model, we need to define the hythontheis function, and determine the parameters

    ML 基础知识_第3张图片   ML 基础知识_第4张图片

  • Hythonthesis function & Cost Function
    • Hypothesis function hΘ(x)
    • Cost Function J(Θ)
  • Gradient Descent

    ML 基础知识_第5张图片   ML 基础知识_第6张图片      ML 基础知识_第7张图片

  • Newton's method

     ML 基础知识_第8张图片ML 基础知识_第9张图片ML 基础知识_第10张图片

Linear Regression

  • Hypothesis function hΘ(x) = ΘT
  • Gradient descent for linear regression

      ML 基础知识_第11张图片ML 基础知识_第12张图片

  • Feature scaling
    • make sure features are on similar scales 
  • Learning rate α 
    • pick the one seems to get J(Θ) to decrease fastest
  • Features & Polynomial regession 
  • Normal Equation ML 基础知识_第13张图片
    • too many features
      • regularization or delete some
      • redundent features (e.g. linear dependent features)

Logistic Regression 

  • Hypothesis function: ML 基础知识_第14张图片  [0,1]
  • Gradient descent & Newton's method for logisitic regression

       ML 基础知识_第15张图片    ML 基础知识_第16张图片

Regularization*

Regularizatio(正则化)意在eliminate overfitting(过拟合)问题。因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本。所以,我们需要保证模型“简单”的基础上最小化训练误差,这样得到的参数才具有好的泛化性能(也就是测试误差也小),而模型“简单”就是通过规则函数来实现的。

简单来说,我们需要在训练误差小(目标1)和模型简单(目标2)之间tradeoff! 

  • 过拟合问题 (too many features)

  ML 基础知识_第17张图片ML 基础知识_第18张图片

  • Regularized linear regression

      ML 基础知识_第19张图片

  • Regularized logistic regression

       

  • regularization 惩罚项 & L2范数*

Reference

  • http://www.52ml.net/12019.html
  • http://blog.csdn.net/zouxy09/article/details/24971995/

 

你可能感兴趣的:(ML 基础知识)