MyCat源码分析系列之——配置信息和启动流程

MyCat源码分析系列

 MyCat配置信息

除了一些默认的配置参数,大多数的MyCat配置信息是通过读取若干.xml/.properties文件获取的,主要包括:

1)server.xml:系统和用户相关配置

2)schema.xml:虚拟库、表、数据节点配置等

3)rule.xml:分片规则设置

4)cacheservice.properties:缓存相关设置

5)dnindex.properties:datahost主从切换配置文件

6)sequence_conf.properties:本地全局序列号配置文件

而在代码层面,与配置相关的类主要包括3个:

1)MycatConfig:最为重要的配置类

2)ReloadConfig:用于通过管理端口执行mysql> reload @@config或config_all命令,重新载入配置文件

3)RollbackConfig:用于通过管理端口执行mysql> rollback @@config命令,将配置信息回滚至reload之前的状态

接下来重点介绍MycatConfig,它最关键的属性如下:

private volatile SystemConfig system;
private volatile MycatCluster cluster;
private volatile MycatCluster _cluster;
private volatile QuarantineConfig quarantine;
private volatile QuarantineConfig _quarantine;
private volatile Map<String, UserConfig> users;
private volatile Map<String, UserConfig> _users;
private volatile Map<String, SchemaConfig> schemas;
private volatile Map<String, SchemaConfig> _schemas;
private volatile Map<String, PhysicalDBNode> dataNodes;
private volatile Map<String, PhysicalDBNode> _dataNodes;
private volatile Map<String, PhysicalDBPool> dataHosts;
private volatile Map<String, PhysicalDBPool> _dataHosts;
  • SystemConfig:包含了诸多系统相关的配置参数(如端口、编码、线程池大小、BufferPool大小、隔离级别等)
  • MycatCluster:MyCat集群配置信息
  • QuarantineConfig:用户权限隔离(黑白名单)
  • UserConfig:用户配置,包含用户名/密码和允许访问的虚拟库
  • SchemaConfig:虚拟库配置,包括所有下属的表配置(

    TableConfig

    )以及这些表涉及的datanode
  • PhysicalDBNode:datanode相关,对应一个数据库实例中的数据库
  • PhysicalDBPool:datahost相关,里面包含了DataHostConfig配置,包括所有writeHosts和readHosts以及读写分离类型等

注意到除了SystemConfig,其余属性都还有一个前缀加了_的同名属性,这些属性其实是作为备份的,用于reload/rollback配置文件时的切换。reload和rollback相关的方法如下:

public void reload(Map<String, UserConfig> users,
            Map<String, SchemaConfig> schemas,
            Map<String, PhysicalDBNode> dataNodes,
            Map<String, PhysicalDBPool> dataHosts, MycatCluster cluster,
            QuarantineConfig quarantine,boolean reloadAll) {
        apply(users, schemas, dataNodes, dataHosts, cluster, quarantine,reloadAll);
        this.reloadTime = TimeUtil.currentTimeMillis();
        this.status = reloadAll?RELOAD_ALL:RELOAD;
}
public void rollback(Map<String, UserConfig> users,
            Map<String, SchemaConfig> schemas,
            Map<String, PhysicalDBNode> dataNodes,
            Map<String, PhysicalDBPool> dataHosts, MycatCluster cluster,
            QuarantineConfig quarantine) {
        apply(users, schemas, dataNodes, dataHosts, cluster, quarantine,status==RELOAD_ALL);
        this.rollbackTime = TimeUtil.currentTimeMillis();
        this.status = ROLLBACK;
}

在reload的时候注意到有reload和reload_all,区别就在于前者不会重新加载与datahost/datanode相关的更改,而后者会。

 

 启动流程

MyCat的启动类为MycatStartup,而主体为MycatServer,其中主要分为两个步骤:

1)初始化:此过程在MycatServer构造函数时执行,包括配置文件的读取、CacheService和RouteService的创建等

public MycatServer() {
        this.config = new MycatConfig();
        this.timer = new Timer(NAME + "Timer", true);
        this.sqlRecorder = new SQLRecorder(config.getSystem()
                .getSqlRecordCount());
        this.isOnline = new AtomicBoolean(true);
        cacheService = new CacheService();
        routerService = new RouteService(cacheService);
        // load datanode active index from properties
        dnIndexProperties = loadDnIndexProps();
        try {
            sqlInterceptor = (SQLInterceptor) Class.forName(
                    config.getSystem().getSqlInterceptor()).newInstance();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        catletClassLoader = new DynaClassLoader(SystemConfig.getHomePath()
                + File.separator + "catlet", config.getSystem()
                .getCatletClassCheckSeconds());
        this.startupTime = TimeUtil.currentTimeMillis();
}

2)运行:此过程由startup()方法触发,包括处理器对象创建、bufferpool创建、处理线程池创建、AIOConnector/NIOConnector创建与启动、两个AIOAcceptor/NIOAcceptor创建与启动、后端数据库的初始连接建立、定时器线程池/定时任务创建与启动

public void startup() throws IOException {

        SystemConfig system = config.getSystem();
        int processorCount = system.getProcessors();

        // server startup
        LOGGER.info("===============================================");
        LOGGER.info(NAME + " is ready to startup ...");
        String inf = "Startup processors ...,total processors:"
                + system.getProcessors() + ",aio thread pool size:"
                + system.getProcessorExecutor()
                + "    \r\n each process allocated socket buffer pool "
                + " bytes ,buffer chunk size:"
                + system.getProcessorBufferChunk()
                + "  buffer pool's capacity(buferPool/bufferChunk) is:"
                + system.getProcessorBufferPool()
                / system.getProcessorBufferChunk();
        LOGGER.info(inf);
        LOGGER.info("sysconfig params:" + system.toString());

        // startup manager
        ManagerConnectionFactory mf = new ManagerConnectionFactory();
        ServerConnectionFactory sf = new ServerConnectionFactory();
        SocketAcceptor manager = null;
        SocketAcceptor server = null;
        aio = (system.getUsingAIO() == 1);

        // startup processors
        int threadPoolSize = system.getProcessorExecutor();
        processors = new NIOProcessor[processorCount];
        long processBuferPool = system.getProcessorBufferPool();
        int processBufferChunk = system.getProcessorBufferChunk();
        int socketBufferLocalPercent = system.getProcessorBufferLocalPercent();
        bufferPool = new BufferPool(processBuferPool, processBufferChunk,
                socketBufferLocalPercent / processorCount);
        businessExecutor = ExecutorUtil.create("BusinessExecutor",
                threadPoolSize);
        timerExecutor = ExecutorUtil.create("Timer", system.getTimerExecutor());
        listeningExecutorService = MoreExecutors.listeningDecorator(businessExecutor);

        for (int i = 0; i < processors.length; i++) {
            processors[i] = new NIOProcessor("Processor" + i, bufferPool,
                    businessExecutor);
        }

        if (aio) {
            LOGGER.info("using aio network handler ");
            asyncChannelGroups = new AsynchronousChannelGroup[processorCount];
            // startup connector
            connector = new AIOConnector();
            for (int i = 0; i < processors.length; i++) {
                asyncChannelGroups[i] = AsynchronousChannelGroup
                        .withFixedThreadPool(processorCount,
                                new ThreadFactory() {
                                    private int inx = 1;

                                    @Override
                                    public Thread newThread(Runnable r) {
                                        Thread th = new Thread(r);
                                        th.setName(BufferPool.LOCAL_BUF_THREAD_PREX
                                                + "AIO" + (inx++));
                                        LOGGER.info("created new AIO thread "
                                                + th.getName());
                                        return th;
                                    }
                                });

            }
            manager = new AIOAcceptor(NAME + "Manager", system.getBindIp(),
                    system.getManagerPort(), mf, this.asyncChannelGroups[0]);

            // startup server

            server = new AIOAcceptor(NAME + "Server", system.getBindIp(),
                    system.getServerPort(), sf, this.asyncChannelGroups[0]);

        } else {
            LOGGER.info("using nio network handler ");
            NIOReactorPool reactorPool = new NIOReactorPool(
                    BufferPool.LOCAL_BUF_THREAD_PREX + "NIOREACTOR",
                    processors.length);
            connector = new NIOConnector(BufferPool.LOCAL_BUF_THREAD_PREX
                    + "NIOConnector", reactorPool);
            ((NIOConnector) connector).start();

            manager = new NIOAcceptor(BufferPool.LOCAL_BUF_THREAD_PREX + NAME
                    + "Manager", system.getBindIp(), system.getManagerPort(),
                    mf, reactorPool);

            server = new NIOAcceptor(BufferPool.LOCAL_BUF_THREAD_PREX + NAME
                    + "Server", system.getBindIp(), system.getServerPort(), sf,
                    reactorPool);
        }
        // manager start
 manager.start();
        LOGGER.info(manager.getName() + " is started and listening on "
                + manager.getPort());
        server.start(); // server started
        LOGGER.info(server.getName() + " is started and listening on "
                + server.getPort());
        LOGGER.info("===============================================");
        // init datahost
        Map<String, PhysicalDBPool> dataHosts = config.getDataHosts();
        LOGGER.info("Initialize dataHost ...");
        for (PhysicalDBPool node : dataHosts.values()) {
            String index = dnIndexProperties.getProperty(node.getHostName(),
                    "0");
            if (!"0".equals(index)) {
                LOGGER.info("init datahost: " + node.getHostName()
                        + "  to use datasource index:" + index);
            }
            node.init(Integer.valueOf(index));
            node.startHeartbeat();
        }
        long dataNodeIldeCheckPeriod = system.getDataNodeIdleCheckPeriod();
        timer.schedule(updateTime(), 0L, TIME_UPDATE_PERIOD);
        timer.schedule(processorCheck(), 0L, system.getProcessorCheckPeriod());
        timer.schedule(dataNodeConHeartBeatCheck(dataNodeIldeCheckPeriod), 0L,
                dataNodeIldeCheckPeriod);
        timer.schedule(dataNodeHeartbeat(), 0L,
                system.getDataNodeHeartbeatPeriod());
        timer.schedule(catletClassClear(), 30000);
}

从以上代码中不难看出,connector用于作为客户端与后端MySQL建立连接,而server和manager则作为服务端接受来自前端应用的连接请求,其中server负责常规业务流程(默认端口8066),而manager负责监控与管理(默认端口9066)。

而datahost的初始化行为由node.init(Integer.valueOf(index));触发,其目的是每个datahost中writehost会连续创建若干初始连接供使用(该数量由schema.xml中datahost标签的minCon属性确定),当后续连接不足时会创建新的连接(最大不超过maxCon)。

由此,MyCat程序启动完成,等待接受来自应用的连接请求和后续的命令处理。

 

为尊重原创成果,如需转载烦请注明本文出处:http://www.cnblogs.com/fernandolee24/p/5193983.html,特此感谢

 

你可能感兴趣的:(MyCat源码分析系列之——配置信息和启动流程)