首先吐槽,搞了1天半,终于弄好了。自己android开发是小白,之前一门心思想在jni目录下读取xml文件,事实证明无论如何都不行的。好吧,后来发现资源文件应该都放在assets目录下,可是文件会被压缩,必须用什么assetmanager访问。opencv之前训练的两个svm.xml和ocr.xml文件,和一般的xml文件不同的,自己解析xml存到opencv的mat中太麻烦了。后来想了又想,还是放到sdcard中比较好,我是通过DDMS导入的,反正这次只是长姿势
声明:
1.本次导入的汽车图片还是包含西班牙的车牌的汽车,它与中国车牌最大的不同是不包含中文,西班牙车牌含有0-9数字及20个英文字符
2.在模拟机上运行速度貌似和vs2008一样慢,而且有识别错的可能,我碰到过
3.原理什么的见我前面的文章,我这次直接使用训练好的svm.xml和ocr.xml,并给出完整的识别流程。整个工程文件,待会上传csdn下载频道
环境需求:
eclipse juno
ndk(r9)
android sdk 4.4 api 19
opencv 2.4.7 android版本
cygwin
准备工作:
1.将E:\OpenCV-2.4.7.1-android-sdk\sdk中的java项目导入工作空间,日后凡事java端调用opencv的函数都要用到这个类库
2.安装opencv manager.apk,目前在android上所有的opencv程序都必须依附于android manger。在DOS窗口口中执行:
adb install <OpenCV4Android SDKpath>/apk/OpenCV_2.4.7_Manager_2.14_armv7a-neon.apk
1.新建android application工程,取名CarPlate,右击项目属性,勾选opencv类库
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical" tools:context=".MainActivity" > <TextView android:id="@+id/myshow" android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="检测结果...." /> <Button android:id="@+id/btn_plate" android:layout_width="fill_parent" android:layout_height="wrap_content" android:text="车牌检测" android:onClick="click" /> <ImageView android:id="@+id/image_view" android:layout_width="wrap_content" android:layout_height="wrap_content" android:contentDescription="@string/str_proc"/> </LinearLayout>
package com.example.carplate; public class CarPlateDetection { public static native String ImageProc(int[] pixels, int w, int h,String path); }
javah com.example.carplate.CarPlateDetection之后,在classes目录下将会有com_example_carplate_CarPlateDetection.h文件
5.新建一个jni文件夹,把刚才的那个com_example_carplate_CarPlateDetection.h文件拷贝过来。然后编写Android.mk:
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) include E:/OpenCV-2.4.7.1-android-sdk/sdk/native/jni/OpenCV.mk LOCAL_SRC_FILES := ImageProc.cpp LOCAL_SRC_FILES += Plate_Recognition.cpp LOCAL_SRC_FILES += Plate_Segment.cpp LOCAL_SRC_FILES += Plate.cpp LOCAL_C_INCLUDES += $(LOCAL_PATH) LOCAL_MODULE := imageproc LOCAL_LDLIBS += -llog include $(BUILD_SHARED_LIBRARY)
6.修改AndroidManifest.xml,增加sdcard权限【就算是读取,也要加上!】:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/> <uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>7. 回到MainActivity 中,编写java端主要的代码:
package com.example.carplate; import java.io.File; import org.opencv.android.BaseLoaderCallback; import org.opencv.android.LoaderCallbackInterface; import org.opencv.android.OpenCVLoader; import org.opencv.core.*; import android.os.Bundle; import android.os.Environment; import android.app.Activity; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.view.Menu; import android.view.View; import android.widget.ImageView; import android.widget.TextView; public class MainActivity extends Activity { private ImageView imageView = null; private Bitmap bmp = null; private TextView m_text = null; private String path = null; //SDCARD 根目录 @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); imageView = (ImageView) findViewById(R.id.image_view); m_text = (TextView) findViewById(R.id.myshow); //将汽车完整图像加载程序中并进行显示 bmp = BitmapFactory.decodeResource(getResources(), R.drawable.test2); imageView.setImageBitmap(bmp); path = Environment.getExternalStorageDirectory().getAbsolutePath();//获取跟目录 System.out.println(path); } //OpenCV类库加载并初始化成功后的回调函数,在此我们不进行任何操作 private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) { @Override public void onManagerConnected(int status) { switch (status) { case LoaderCallbackInterface.SUCCESS:{ System.loadLibrary("imageproc"); } break; default:{ super.onManagerConnected(status); } break; } } }; public void click(View view){ System.out.println("entering the jni"); int w = bmp.getWidth(); int h = bmp.getHeight(); int[] pixels = new int[w * h]; String result=null; bmp.getPixels(pixels, 0, w, 0, 0, w, h); // System.out.println(Environment.getExternalStorageState()); result=CarPlateDetection.ImageProc(pixels, w, h,path); System.out.println(result); m_text.setText(result); } @Override protected void onResume() { // TODO Auto-generated method stub super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存在于OpenCV安装包的apk目录中 OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_3, this, mLoaderCallback); } }
Plate.h:【车牌类,包含车牌数据结构及对识别的车牌字符顺序调整函数】
#ifndef Plate_h #define Plate_h #include <string.h> #include <vector> #include <cv.h> #include <highgui.h> #include <cvaux.h> using namespace std; using namespace cv; class Plate{ public: Plate(); Plate(Mat img, Rect pos); string str(); Rect position; Mat plateImg; vector<char> chars; vector<Rect> charsPos; }; #endif
#include "Plate.h" Plate::Plate(){ } Plate::Plate(Mat img, Rect pos){ plateImg=img; position=pos; } string Plate::str(){ string result=""; //Order numbers vector<int> orderIndex; vector<int> xpositions; for(int i=0; i< charsPos.size(); i++){ orderIndex.push_back(i); xpositions.push_back(charsPos[i].x); } float min=xpositions[0]; int minIdx=0; for(int i=0; i< xpositions.size(); i++){ min=xpositions[i]; minIdx=i; for(int j=i; j<xpositions.size(); j++){ if(xpositions[j]<min){ min=xpositions[j]; minIdx=j; } } int aux_i=orderIndex[i]; int aux_min=orderIndex[minIdx]; orderIndex[i]=aux_min; orderIndex[minIdx]=aux_i; float aux_xi=xpositions[i]; float aux_xmin=xpositions[minIdx]; xpositions[i]=aux_xmin; xpositions[minIdx]=aux_xi; } for(int i=0; i<orderIndex.size(); i++){ result=result+chars[orderIndex[i]]; } return result; }
#ifndef seg_h #define seg_h #include<iostream> #include <cv.h> #include <highgui.h> #include <cvaux.h> #include "Plate.h" using namespace std; using namespace cv; bool verifySizes(RotatedRect mr); Mat histeq(Mat in); vector<Plate> segment(Mat input); #endif
#include "Plate_Segment.h" //对minAreaRect获得的最小外接矩形,用纵横比进行判断 bool verifySizes(RotatedRect mr) { float error=0.4; //Spain car plate size: 52x11 aspect 4,7272 float aspect=4.7272; //Set a min and max area. All other patchs are discarded int min= 15*aspect*15; // minimum area int max= 125*aspect*125; // maximum area //Get only patchs that match to a respect ratio. float rmin= aspect-aspect*error; float rmax= aspect+aspect*error; int area= mr.size.height * mr.size.width; float r= (float)mr.size.width / (float)mr.size.height; if(r<1) r= (float)mr.size.height / (float)mr.size.width; if(( area < min || area > max ) || ( r < rmin || r > rmax )){ return false; }else{ return true; } } Mat histeq(Mat in) { Mat out(in.size(), in.type()); if(in.channels()==3){ Mat hsv; vector<Mat> hsvSplit; cvtColor(in, hsv, CV_BGR2HSV); split(hsv, hsvSplit); equalizeHist(hsvSplit[2], hsvSplit[2]); merge(hsvSplit, hsv); cvtColor(hsv, out, CV_HSV2BGR); }else if(in.channels()==1){ equalizeHist(in, out); } return out; } vector<Plate> segment(Mat input){ vector<Plate> output; //apply a Gaussian blur of 5 x 5 and remove noise Mat img_gray; cvtColor(input, img_gray, CV_BGR2GRAY); blur(img_gray, img_gray, Size(5,5)); //Finde vertical edges. Car plates have high density of vertical lines Mat img_sobel; Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT);//xorder=1,yorder=0,kernelsize=3 //apply a threshold filter to obtain a binary image through Otsu's method Mat img_threshold; threshold(img_sobel, img_threshold, 0, 255, CV_THRESH_OTSU+CV_THRESH_BINARY); //Morphplogic operation close:remove blank spaces and connect all regions that have a high number of edges Mat element = getStructuringElement(MORPH_RECT, Size(17, 3) ); morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE, element); //Find 轮廓 of possibles plates vector< vector< Point> > contours; findContours(img_threshold, contours, // a vector of contours CV_RETR_EXTERNAL, // 提取外部轮廓 CV_CHAIN_APPROX_NONE); // all pixels of each contours //Start to iterate to each contour founded vector<vector<Point> >::iterator itc= contours.begin(); vector<RotatedRect> rects; //Remove patch that are no inside limits of aspect ratio and area. while (itc!=contours.end()) { //Create bounding rect of object RotatedRect mr= minAreaRect(Mat(*itc)); if( !verifySizes(mr)){ itc= contours.erase(itc); }else{ ++itc; rects.push_back(mr); } } cv::Mat result; input.copyTo(result); for(int i=0; i< rects.size(); i++) { //get the min size between width and height float minSize=(rects[i].size.width < rects[i].size.height)?rects[i].size.width:rects[i].size.height; minSize=minSize-minSize*0.5; //initialize rand and get 5 points around center for floodfill algorithm srand ( time(NULL) ); //Initialize floodfill parameters and variables Mat mask; mask.create(input.rows + 2, input.cols + 2, CV_8UC1); mask= Scalar::all(0); int loDiff = 30; int upDiff = 30; int connectivity = 4; int newMaskVal = 255; int NumSeeds = 10; Rect ccomp; int flags = connectivity + (newMaskVal << 8 ) + CV_FLOODFILL_FIXED_RANGE + CV_FLOODFILL_MASK_ONLY; for(int j=0; j<NumSeeds; j++){ Point seed; seed.x=rects[i].center.x+rand()%(int)minSize-(minSize/2); seed.y=rects[i].center.y+rand()%(int)minSize-(minSize/2); int area = floodFill(input, mask, seed, Scalar(255,0,0), &ccomp, Scalar(loDiff, loDiff, loDiff), Scalar(upDiff, upDiff, upDiff), flags); } //Check new floodfill mask match for a correct patch. //Get all points detected for get Minimal rotated Rect vector<Point> pointsInterest; Mat_<uchar>::iterator itMask= mask.begin<uchar>(); Mat_<uchar>::iterator end= mask.end<uchar>(); for( ; itMask!=end; ++itMask) if(*itMask==255) pointsInterest.push_back(itMask.pos()); RotatedRect minRect = minAreaRect(pointsInterest); if(verifySizes(minRect)){ // rotated rectangle drawing Point2f rect_points[4]; minRect.points( rect_points ); //Get rotation matrix float r= (float)minRect.size.width / (float)minRect.size.height; float angle=minRect.angle; if(r<1) angle=90+angle; Mat rotmat= getRotationMatrix2D(minRect.center, angle,1); //Create and rotate image Mat img_rotated; warpAffine(input, img_rotated, rotmat, input.size(), CV_INTER_CUBIC); //Crop image Size rect_size=minRect.size; if(r < 1) swap(rect_size.width, rect_size.height); Mat img_crop; getRectSubPix(img_rotated, rect_size, minRect.center, img_crop); Mat resultResized; resultResized.create(33,144, CV_8UC3); resize(img_crop, resultResized, resultResized.size(), 0, 0, INTER_CUBIC); //Equalize croped image Mat grayResult; cvtColor(resultResized, grayResult, CV_BGR2GRAY); blur(grayResult, grayResult, Size(3,3)); grayResult=histeq(grayResult); output.push_back(Plate(grayResult,minRect.boundingRect())); } } return output; }
#ifndef rec_h #define rec_h #include <cv.h> #include <highgui.h> #include <cvaux.h> #include <ml.h> #include <iostream> #include <vector> #define HORIZONTAL 1 #define VERTICAL 0 using namespace std; using namespace cv; bool verifySizes(Mat r); Mat preprocessChar(Mat in); Mat ProjectedHistogram(Mat img, int t); Mat features(Mat in, int sizeData); int classify(Mat f,CvANN_MLP *ann); void train(Mat TrainData, Mat classes,CvANN_MLP *ann,int nlayers); #endif
#include "Plate_Recognition.h" const int numCharacters=30; bool verifySizes(Mat r){ //Char sizes 45x77 float aspect=45.0f/77.0f; float charAspect= (float)r.cols/(float)r.rows; float error=0.35; float minHeight=15; float maxHeight=28; //We have a different aspect ratio for number 1, and it can be ~0.2 float minAspect=0.2; float maxAspect=aspect+aspect*error; //area of pixels float area=countNonZero(r); //bb area float bbArea=r.cols*r.rows; // of pixel in area float percPixels=area/bbArea; if(percPixels < 0.8 && charAspect > minAspect && charAspect < maxAspect && r.rows >= minHeight && r.rows < maxHeight) return true; else return false; } Mat preprocessChar(Mat in){ //Remap image int h=in.rows; int w=in.cols; int charSize=20; //统一每个字符的大小 Mat transformMat=Mat::eye(2,3,CV_32F); int m=max(w,h); transformMat.at<float>(0,2)=m/2 - w/2; transformMat.at<float>(1,2)=m/2 - h/2; Mat warpImage(m,m, in.type()); warpAffine(in, warpImage, transformMat, warpImage.size(), INTER_LINEAR, BORDER_CONSTANT, Scalar(0) ); Mat out; resize(warpImage, out, Size(charSize, charSize) ); return out; } //create the accumulation histograms,img is a binary image, t is 水平或垂直 Mat ProjectedHistogram(Mat img, int t) { int sz=(t)?img.rows:img.cols; Mat mhist=Mat::zeros(1,sz,CV_32F); for(int j=0; j<sz; j++){ Mat data=(t)?img.row(j):img.col(j); mhist.at<float>(j)=countNonZero(data); //统计这一行或一列中,非零元素的个数,并保存到mhist中 } //Normalize histogram double min, max; minMaxLoc(mhist, &min, &max); if(max>0) mhist.convertTo(mhist,-1 , 1.0f/max, 0);//用mhist直方图中的最大值,归一化直方图 return mhist; } Mat features(Mat in, int sizeData){ //Histogram features Mat vhist=ProjectedHistogram(in,VERTICAL); Mat hhist=ProjectedHistogram(in,HORIZONTAL); //Low data feature Mat lowData; resize(in, lowData, Size(sizeData, sizeData) ); //Last 10 is the number of moments components int numCols=vhist.cols+hhist.cols+lowData.cols*lowData.cols; Mat out=Mat::zeros(1,numCols,CV_32F); //Asign values to feature,ANN的样本特征为水平、垂直直方图和低分辨率图像所组成的矢量 int j=0; for(int i=0; i<vhist.cols; i++) { out.at<float>(j)=vhist.at<float>(i); j++; } for(int i=0; i<hhist.cols; i++) { out.at<float>(j)=hhist.at<float>(i); j++; } for(int x=0; x<lowData.cols; x++) { for(int y=0; y<lowData.rows; y++){ out.at<float>(j)=(float)lowData.at<unsigned char>(x,y); j++; } } return out; } int classify(Mat f,CvANN_MLP *ann){ int result=-1; Mat output(1, 30, CV_32FC1); //西班牙车牌只有30种字符 (*ann).predict(f, output); Point maxLoc; double maxVal; minMaxLoc(output, 0, &maxVal, 0, &maxLoc); return maxLoc.x; } void train(Mat TrainData, Mat classes,CvANN_MLP *ann,int nlayers){ Mat layers(1,3,CV_32SC1); layers.at<int>(0)= TrainData.cols; layers.at<int>(1)= nlayers; layers.at<int>(2)= 30; (*ann).create(layers, CvANN_MLP::SIGMOID_SYM, 1, 1); //Prepare trainClases //Create a mat with n trained data by m classes Mat trainClasses; trainClasses.create( TrainData.rows, 30, CV_32FC1 ); for( int i = 0; i < trainClasses.rows; i++ ) { for( int k = 0; k < trainClasses.cols; k++ ) { //If class of data i is same than a k class if( k == classes.at<int>(i) ) trainClasses.at<float>(i,k) = 1; else trainClasses.at<float>(i,k) = 0; } } Mat weights( 1, TrainData.rows, CV_32FC1, Scalar::all(1) ); //Learn classifier (*ann).train( TrainData, trainClasses, weights ); }
#include<com_example_carplate_CarPlateDetection.h> #include "Plate.h" #include "Plate_Segment.h" #include "Plate_Recognition.h" #include <android/log.h> #define LOG_TAG "System.out" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__) #define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG,__VA_ARGS__) #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__) /*char* jstring2str(JNIEnv* env, jstring jstr) { char* rtn = NULL; jclass clsstring = env->FindClass("java/lang/String"); jstring strencode = env->NewStringUTF("GB2312"); jmethodID mid = env->GetMethodID(clsstring, "getBytes", "(Ljava/lang/String;)[B"); jbyteArray barr= (jbyteArray)env->CallObjectMethod(jstr,mid,strencode); jsize alen = env->GetArrayLength(barr); jbyte* ba = env->GetByteArrayElements(barr,JNI_FALSE); if(alen > 0) { rtn = (char*)malloc(alen+1); memcpy(rtn,ba,alen); rtn[alen]=0; } env->ReleaseByteArrayElements(barr,ba,0); return rtn; }*/ JNIEXPORT jstring JNICALL Java_com_example_carplate_CarPlateDetection_ImageProc (JNIEnv *env, jclass obj, jintArray buf, jint w, jint h,jstring dir){ jint *cbuf; cbuf = env->GetIntArrayElements(buf, false); //char* path = jstring2str(env,dir); Size size; size.width = w; size.height = h; Mat imageData,input; imageData = Mat(size, CV_8UC4, (unsigned char*)cbuf); input = Mat(size, CV_8UC3); cvtColor(imageData,input,CV_BGRA2BGR); vector<Plate> posible_regions = segment(input); const char strCharacters[] = {'0','1','2','3','4','5','6','7','8','9','B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z'}; CvANN_MLP ann; //SVM for each plate region to get valid car plates,Read file storage. FileStorage fs; //strcat(path,"/SVM.xml"); fs.open("/storage/sdcard/SVM.xml", FileStorage::READ); Mat SVM_TrainingData; Mat SVM_Classes; fs["TrainingData"] >> SVM_TrainingData; fs["classes"] >> SVM_Classes; if(fs.isOpened()) LOGD("read success!"); //Set SVM params LOGD("size:%d",SVM_TrainingData.rows); SVM_TrainingData.convertTo(SVM_TrainingData, CV_32FC1); SVM_Classes.convertTo(SVM_Classes, CV_32FC1); CvSVMParams SVM_params; SVM_params.svm_type = CvSVM::C_SVC; SVM_params.kernel_type = CvSVM::LINEAR; //CvSVM::LINEAR; SVM_params.degree = 0; SVM_params.gamma = 1; SVM_params.coef0 = 0; SVM_params.C = 1; SVM_params.nu = 0; SVM_params.p = 0; SVM_params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.01); LOGD("Everything is ready"); //Train SVM LOGD("START TO ENTER SVM PREDICT"); CvSVM svmClassifier(SVM_TrainingData, SVM_Classes, Mat(), Mat(), SVM_params); //For each possible plate, classify with svm if it's a plate or no vector<Plate> plates; for(int i=0; i< posible_regions.size(); i++) { Mat img=posible_regions[i].plateImg; Mat p= img.reshape(1, 1); p.convertTo(p, CV_32FC1); int response = (int)svmClassifier.predict( p ); if(response==1) plates.push_back(posible_regions[i]); } LOGD("SVM PREDICT FINISH"); fs.release(); //Read file storage. FileStorage fs2; fs2.open("/storage/sdcard/OCR.xml", FileStorage::READ); Mat TrainingData; Mat Classes; fs2["TrainingDataF15"] >> TrainingData; fs2["classes"] >> Classes; LOGD("size:%d",TrainingData.rows); LOGD("START TO TRAIN MLP"); //训练神经网络 train(TrainingData, Classes,&ann,10); LOGD("FINISH TRAIN MLP"); Mat inputs=plates[0].plateImg; Plate mplate; //dealing image and save each character image into vector<CharSegment> //Threshold input image Mat img_threshold; threshold(inputs, img_threshold, 60, 255, CV_THRESH_BINARY_INV); Mat img_contours; img_threshold.copyTo(img_contours); //Find contours of possibles characters vector< vector< Point> > contours; findContours(img_contours, contours, // a vector of contours CV_RETR_EXTERNAL, // retrieve the external contours CV_CHAIN_APPROX_NONE); // all pixels of each contours //Start to iterate to each contour founded vector<vector<Point> >::iterator itc= contours.begin(); LOGD("Before extracting hist and low-resolution image"); //Remove patch that are no inside limits of aspect ratio and area. while (itc!=contours.end()) { //Create bounding rect of object Rect mr= boundingRect(Mat(*itc)); //Crop image Mat auxRoi(img_threshold, mr); if(verifySizes(auxRoi)){ auxRoi=preprocessChar(auxRoi); LOGD("FINISH extracting features"); //对每一个小方块,提取直方图特征 Mat f=features(auxRoi,15); //For each segment feature Classify LOGD("START TO CLASSIFY IN MLP"); int character=classify(f,&ann); mplate.chars.push_back(strCharacters[character]); LOGD("FINISH CLASSIFY"); mplate.charsPos.push_back(mr); //printf("%c ",strCharacters[character]); } ++itc; } fs2.release(); string licensePlate=mplate.str(); //const char *result; //result=licensePlate.c_str(); env->ReleaseIntArrayElements(buf, cbuf, 0); return env->NewStringUTF(licensePlate.c_str()); }
9.最后用cygwin进行交叉编译:
打开cygwin,输入
cd /cygdrive/e/worksapce/CarPlate
ndk-build
记得按F5,并clean一下工程,这是在libs目录下有个libimage_proc.so文件,
10.通过DDMS向sdcard中添加文件:
打开虚拟机,点击DDMS:
如果能进入如下界面的话:【否则点击左半边的小倒三角,选择reset adb】
点击右半边右上角第二个按钮:
跑到如storage/sdcard目录下,将之前训练好的SVM.XML和OCR.XML都加入进去。
如果cygwin没有报错的话,然后运行我们的android applicatoin
效果图:注意:
1.如果想玩国内车牌的话,可以用我之前 2篇文章的方法,自己人工分类图片【不用你裁剪,只要挑选就行】,并运行程序得到相应的xml文件
2.这边我的路径和资源摆放都很不够理想,暂时也想不出更好的了
完整的程序下载地址:http://download.csdn.net/detail/jinshengtao/6828651
里面的assets文件夹下有训练好的svm.xml和ocr.xml,把他放到sdcard中吧