排序算法复习(Java实现)(一): 插入,冒泡,选择,Shell,快速排序
为了便于管理,先引入个基础类:
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:
二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)
三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。
这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。
一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列
五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。
还有归并排序,堆排序,桶式排序,基数排序,下次在归纳。
package
algorithms;
/**
* @author yovn
*
*/
public abstract class Sorter < E extends Comparable < E >> {
public abstract void sort(E[] array, int from , int len);
public final void sort(E[] array)
{
sort(array, 0 ,array.length);
}
protected final void swap(E[] array, int from , int to)
{
E tmp = array[from];
array[from] = array[to];
array[to] = tmp;
}
}
一 插入排序
/**
* @author yovn
*
*/
public abstract class Sorter < E extends Comparable < E >> {
public abstract void sort(E[] array, int from , int len);
public final void sort(E[] array)
{
sort(array, 0 ,array.length);
}
protected final void swap(E[] array, int from , int to)
{
E tmp = array[from];
array[from] = array[to];
array[to] = tmp;
}
}
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:
package
algorithms;
/**
* @author yovn
*/
public class InsertSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
public void sort(E[] array, int from, int len) {
E tmp = null ;
for ( int i = from + 1 ;i < from + len;i ++ )
{
tmp = array[i];
int j = i;
for (;j > from;j -- )
{
if (tmp.compareTo(array[j - 1 ]) < 0 )
{
array[j] = array[j - 1 ];
}
else break ;
}
array[j] = tmp;
}
}
}
/**
* @author yovn
*/
public class InsertSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
public void sort(E[] array, int from, int len) {
E tmp = null ;
for ( int i = from + 1 ;i < from + len;i ++ )
{
tmp = array[i];
int j = i;
for (;j > from;j -- )
{
if (tmp.compareTo(array[j - 1 ]) < 0 )
{
array[j] = array[j - 1 ];
}
else break ;
}
array[j] = tmp;
}
}
}
二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)
package
algorithms;
/**
* @author yovn
*
*/
public class BubbleSorter < E extends Comparable < E >> extends Sorter < E > {
private static boolean DWON = true ;
public final void bubble_down(E[] array, int from, int len)
{
for ( int i = from;i < from + len;i ++ )
{
for ( int j = from + len - 1 ;j > i;j -- )
{
if (array[j].compareTo(array[j - 1 ]) < 0 )
{
swap(array,j - 1 ,j);
}
}
}
}
public final void bubble_up(E[] array, int from, int len)
{
for ( int i = from + len - 1 ;i >= from;i -- )
{
for ( int j = from;j < i;j ++ )
{
if (array[j].compareTo(array[j + 1 ]) > 0 )
{
swap(array,j,j + 1 );
}
}
}
}
@Override
public void sort(E[] array, int from, int len) {
if (DWON)
{
bubble_down(array,from,len);
}
else
{
bubble_up(array,from,len);
}
}
}
/**
* @author yovn
*
*/
public class BubbleSorter < E extends Comparable < E >> extends Sorter < E > {
private static boolean DWON = true ;
public final void bubble_down(E[] array, int from, int len)
{
for ( int i = from;i < from + len;i ++ )
{
for ( int j = from + len - 1 ;j > i;j -- )
{
if (array[j].compareTo(array[j - 1 ]) < 0 )
{
swap(array,j - 1 ,j);
}
}
}
}
public final void bubble_up(E[] array, int from, int len)
{
for ( int i = from + len - 1 ;i >= from;i -- )
{
for ( int j = from;j < i;j ++ )
{
if (array[j].compareTo(array[j + 1 ]) > 0 )
{
swap(array,j,j + 1 );
}
}
}
}
@Override
public void sort(E[] array, int from, int len) {
if (DWON)
{
bubble_down(array,from,len);
}
else
{
bubble_up(array,from,len);
}
}
}
三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。
package
algorithms;
/**
* @author yovn
*
*/
public class SelectSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
for ( int i = 0 ;i < len;i ++ )
{
int smallest = i;
int j = i + from;
for (;j < from + len;j ++ )
{
if (array[j].compareTo(array[smallest]) < 0 )
{
smallest = j;
}
}
swap(array,i,smallest);
}
}
}
四 Shell排序
/**
* @author yovn
*
*/
public class SelectSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
for ( int i = 0 ;i < len;i ++ )
{
int smallest = i;
int j = i + from;
for (;j < from + len;j ++ )
{
if (array[j].compareTo(array[smallest]) < 0 )
{
smallest = j;
}
}
swap(array,i,smallest);
}
}
}
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。
这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。
一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列
package
algorithms;
/**
* @author yovn
*/
public class ShellSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
* complexity is O(n^1.5)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
// 1.calculate the first delta value;
int value = 1 ;
while ((value + 1 ) * 2 < len)
{
value = (value + 1 ) * 2 - 1 ;
}
for ( int delta = value;delta >= 1 ;delta = (delta + 1 ) / 2 - 1 )
{
for ( int i = 0 ;i < delta;i ++ )
{
modify_insert_sort(array,from + i,len - i,delta);
}
}
}
private final void modify_insert_sort(E[] array, int from, int len, int delta) {
if (len <= 1 ) return ;
E tmp = null ;
for ( int i = from + delta;i < from + len;i += delta)
{
tmp = array[i];
int j = i;
for (;j > from;j -= delta)
{
if (tmp.compareTo(array[j - delta]) < 0 )
{
array[j] = array[j - delta];
}
else break ;
}
array[j] = tmp;
}
}
}
/**
* @author yovn
*/
public class ShellSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
* complexity is O(n^1.5)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
// 1.calculate the first delta value;
int value = 1 ;
while ((value + 1 ) * 2 < len)
{
value = (value + 1 ) * 2 - 1 ;
}
for ( int delta = value;delta >= 1 ;delta = (delta + 1 ) / 2 - 1 )
{
for ( int i = 0 ;i < delta;i ++ )
{
modify_insert_sort(array,from + i,len - i,delta);
}
}
}
private final void modify_insert_sort(E[] array, int from, int len, int delta) {
if (len <= 1 ) return ;
E tmp = null ;
for ( int i = from + delta;i < from + len;i += delta)
{
tmp = array[i];
int j = i;
for (;j > from;j -= delta)
{
if (tmp.compareTo(array[j - delta]) < 0 )
{
array[j] = array[j - delta];
}
else break ;
}
array[j] = tmp;
}
}
}
五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。
package
algorithms;
/**
* @author yovn
*
*/
public class QuickSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
q_sort(array,from,from + len - 1 );
}
private final void q_sort(E[] array, int from, int to) {
if (to - from < 1 ) return ;
int pivot = selectPivot(array,from,to);
pivot = partion(array,from,to,pivot);
q_sort(array,from,pivot - 1 );
q_sort(array,pivot + 1 ,to);
}
private int partion(E[] array, int from, int to, int pivot) {
E tmp = array[pivot];
array[pivot] = array[to]; // now to's position is available
while (from != to)
{
while (from < to && array[from].compareTo(tmp) <= 0 )from ++ ;
if (from < to)
{
array[to] = array[from]; // now from's position is available
to -- ;
}
while (from < to && array[to].compareTo(tmp) >= 0 )to -- ;
if (from < to)
{
array[from] = array[to]; // now to's position is available now
from ++ ;
}
}
array[from] = tmp;
return from;
}
private int selectPivot(E[] array, int from, int to) {
return (from + to) / 2 ;
}
}
/**
* @author yovn
*
*/
public class QuickSorter < E extends Comparable < E >> extends Sorter < E > {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
q_sort(array,from,from + len - 1 );
}
private final void q_sort(E[] array, int from, int to) {
if (to - from < 1 ) return ;
int pivot = selectPivot(array,from,to);
pivot = partion(array,from,to,pivot);
q_sort(array,from,pivot - 1 );
q_sort(array,pivot + 1 ,to);
}
private int partion(E[] array, int from, int to, int pivot) {
E tmp = array[pivot];
array[pivot] = array[to]; // now to's position is available
while (from != to)
{
while (from < to && array[from].compareTo(tmp) <= 0 )from ++ ;
if (from < to)
{
array[to] = array[from]; // now from's position is available
to -- ;
}
while (from < to && array[to].compareTo(tmp) >= 0 )to -- ;
if (from < to)
{
array[from] = array[to]; // now to's position is available now
from ++ ;
}
}
array[from] = tmp;
return from;
}
private int selectPivot(E[] array, int from, int to) {
return (from + to) / 2 ;
}
}
还有归并排序,堆排序,桶式排序,基数排序,下次在归纳。
转载自: http://www.blogjava.net/javacap/archive/2007/12/13/167364.html