int cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour,int header_size=sizeof(CvContour),int mode=CV_RETR_LIST,int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0,0) );
/************************************************************************/ /* 提取轮廓两种方法对比及绘制轮廓'最大等级'分析 */ /************************************************************************/ #include "stdafx.h" #include "cv.h" #include "highgui.h" int main() { IplImage* img = cvLoadImage("lena.jpg", CV_LOAD_IMAGE_GRAYSCALE); IplImage* img_temp = cvCreateImage(cvGetSize(img), 8, 1); cvThreshold(img, img, 128, 255, CV_THRESH_BINARY); CvMemStorage* mem_storage = cvCreateMemStorage(0); CvSeq *first_contour = NULL, *c = NULL; ////////////////////////////////////////////////////////////////////////// // 1、 cvNamedWindow("contour1"); cvCopyImage(img, img_temp); double t = (double)cvGetTickCount(); cvFindContours(img_temp, mem_storage, &first_contour); cvZero(img_temp); cvDrawContours( img_temp, first_contour, cvScalar(100), cvScalar(100), 1 ); t = (double)cvGetTickCount() - t; cvShowImage("contour1", img_temp); printf("run1 = %gms\n", t/(cvGetTickFrequency()*1000.)); cvClearMemStorage(mem_storage); ////////////////////////////////////////////////////////////////////////// // 2、 cvNamedWindow("contour2"); cvCopyImage(img, img_temp); t = (double)cvGetTickCount(); CvContourScanner scanner = cvStartFindContours(img_temp, mem_storage); while (cvFindNextContour(scanner)); first_contour = cvEndFindContours(&scanner); cvZero(img_temp); cvDrawContours( img_temp, first_contour, cvScalar(100), cvScalar(100), 1 ); t = (double)cvGetTickCount() - t; cvShowImage("contour2", img_temp); printf("run2 = %gms\n", t/(cvGetTickFrequency()*1000.)); cvClearMemStorage(mem_storage); cvReleaseImage(&img); cvReleaseImage(&img_temp); cvWaitKey(); /************************************************************************/ /* 经测试 run1 = 16.1431ms run2 = 15.8677ms (参考) 不过可以肯定这两中算法时间复杂度是相同的 */ /************************************************************************/ ////////////////////////////////////////////////////////////////////////// // 上述两种方法完成了对轮廓的提取,如想绘制轮廓都得配合cvDrawContours来使用 // 而cvDrawContours 函数第5个参数为 max_level 经查ICVL含义如下: // // 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓。 // 如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种。如果值为负数, // 函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓。 // // 相信好多读者初次都无法理解等级的含义,而且测试时候输入>=1 的整数效果几乎一样 // 只有提取轮廓时候的提取模式设为 CV_RETR_CCOMP CV_RETR_TREE 时这个参数才有意义 // // 经查FindContours 函数里面这样介绍提取模式(mode)的这两个参数: // CV_RETR_CCOMP - 提取所有轮廓,并且将其组织为两层的 hierarchy: 顶层为连通域的外围边界,次层为洞的内层边界。 // CV_RETR_TREE - 提取所有轮廓,并且重构嵌套轮廓的全部 hierarchy // // 下面用第一种方法进行测试 cvNamedWindow("contour_test"); cvNamedWindow("contour_raw"); img = cvLoadImage("contour.jpg", CV_LOAD_IMAGE_GRAYSCALE); cvShowImage("contour_raw", img); cvThreshold(img, img, 128, 255, CV_THRESH_BINARY); img_temp = cvCloneImage(img); cvFindContours( img_temp, mem_storage, &first_contour, sizeof(CvContour), CV_RETR_CCOMP //#1 需更改区域 ); cvZero(img_temp); cvDrawContours( img_temp, first_contour, cvScalar(100), cvScalar(100), 1 //#2 需更改区域 ); cvShowImage("contour_test", img_temp); /************************************************************************/ /* (1, 2) = (CV_RETR_CCOMP, 1) 如图1 (1, 2) = (CV_RETR_CCOMP, 2) 如图2 (1, 2) = (CV_RETR_TREE, 1) 如图3 (1, 2) = (CV_RETR_TREE, 2) 如图4 (1, 2) = (CV_RETR_TREE, 6) 如图5 经分析CV_RETR_CCOMP 只把图像分为两个层次,顶层和次层,一等级轮廓只匹配与其最接近 的内侧轮廓即2等级 CV_RETR_TREE 则从轮廓外到内按等级1 - n 全部分配 CV_RETR_LIST 全部轮廓均为1级 */ /************************************************************************/ cvWaitKey(); cvReleaseImage(&img); cvReleaseImage(&img_temp); cvReleaseMemStorage(&mem_storage); cvDestroyAllWindows(); return 0; }
原图
图一
图二
图三
图四
图五
这是OpenCV的经典一个例子:
#include "cv.h" #include "cxcore.h" #include "highgui.h" #include <math.h> #endif #pragma comment(lib,"cv.lib") #pragma comment(lib,"highgui.lib") #pragma comment(lib,"cxcore.lib") #define w 500 int levels = 3; CvSeq* contours = 0; void on_trackbar(int pos) { IplImage* cnt_img = cvCreateImage( cvSize(w,w), 8, 3 ); CvSeq* _contours = contours; int _levels = levels - 3; if( _levels <= 0 ) // get to the nearest face to make it look more funny _contours = _contours->h_next->h_next->h_next->h_next->h_next->h_next->h_next->v_next->h_next->h_next; //_contours = _contours->v_next; cvZero( cnt_img ); cvDrawContours( cnt_img, _contours, CV_RGB(255,0,0), CV_RGB(0,255,0), _levels);//, 3, CV_AA, cvPoint(0,0) ); /*_levels: 3,所有外轮廓及包含的内轮廓及里面的内轮廓 2:所有外轮廓及包含的内轮廓 1:所有外轮廓 0,第一个外轮廓 -1:第一个外轮廓及包含的内轮廓 -2:第一个外轮廓及包含的内轮廓及里面的内轮廓 _contours->h_next:同级的下一个轮廓 _contours->v_next父级下的下层区域; */ cvShowImage( "contours", cnt_img ); cvReleaseImage( &cnt_img ); } int main( int argc, char** argv ) { int i, j; CvMemStorage* storage = cvCreateMemStorage(0); IplImage* img = cvCreateImage( cvSize(w,w), 8, 1 ); cvZero( img ); for( i=0; i < 6; i++ ) { int dx = (i%2)*250 - 30;//0%2=0; int dy = (i/2)*150; CvScalar white = cvRealScalar(255); CvScalar black = cvRealScalar(0); if( i == 0 ) { for( j = 0; j <= 10; j++ ) { double angle = (j+5)*CV_PI/21; cvLine(img, cvPoint(cvRound(dx+100+j*10-80*cos(angle)), cvRound(dy+100-90*sin(angle))), cvPoint(cvRound(dx+100+j*10-30*cos(angle)), cvRound(dy+100-30*sin(angle))), white, 1, 8, 0); } } cvEllipse( img, cvPoint(dx+150, dy+100), cvSize(100,70), 0, 0, 360, white, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+115, dy+70), cvSize(30,20), 0, 0, 360, black, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+185, dy+70), cvSize(30,20), 0, 0, 360, black, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+115, dy+70), cvSize(15,15), 0, 0, 360, white, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+185, dy+70), cvSize(15,15), 0, 0, 360, white, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+115, dy+70), cvSize(5,5), 0, 0, 360, black, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+185, dy+70), cvSize(5,5), 0, 0, 360, black, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+150, dy+100), cvSize(10,5), 0, 0, 360, black, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+150, dy+150), cvSize(40,10), 0, 0, 360, black, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+27, dy+100), cvSize(20,35), 0, 0, 360, white, -1, 8, 0 ); cvEllipse( img, cvPoint(dx+273, dy+100), cvSize(20,35), 0, 0, 360, white, -1, 8, 0 ); } cvNamedWindow( "image", 1 ); cvShowImage( "image", img ); cvFindContours( img, storage, &contours, sizeof(CvContour), 2, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) ); // comment this out if you do not want approximation contours = cvApproxPoly( contours, sizeof(CvContour), storage, CV_POLY_APPROX_DP, 3, 1 ); //cvApproxPoly: 逼近方法 精度 逼近曲线是否封闭 cvNamedWindow( "contours", 1 ); cvCreateTrackbar( "levels+3", "contours", &levels, 7, on_trackbar ); on_trackbar(0); cvWaitKey(0); cvReleaseMemStorage( &storage ); cvReleaseImage( &img ); return 0; }
主要还是理解下int mode=CV_RETR_LIST,int method=CV_CHAIN_APPROX_SIMPLE,CvPoint offset=cvPoint(0,0));
当mode 为CV_RETR_CCOMP 只把图像分为两个层次,顶层和次层,一等级轮廓只匹配与其最接近 ;
cvDrawContours 函数第5个参数为 max_level=0时,笑脸图像会显示第一个找到的轮廓,左边的白色耳朵一只;
max_level=1时,所有白色区域的轮廓都会被显示出来,因为他们都属于等级1;
max_level=2时;每个白色区域里面的黑色区域会被显示出来,可能一个白色区域下面有多个黑色区域,但他们都是同级的;
这里你要注意的的是每个白色区域下的黑色区域,如脸下面有4个黑色区域,白色眼珠下有一个黑色区域,这个黑色区域与脸下的那三个区域时同级的,也就是说他不属于脸的内区域,他是白色眼珠的内区域;
当mode为 CV_RETR_LIST 全部轮廓均为1级