前面的7次笔记介绍的都是分类问题,本次开始介绍聚类问题。分类和聚类的区别在于前者属于监督学习算法,已知样本的标签;后者属于无监督的学习,不知道样本的标签。下面我们来讲解最常用的kmeans算法。
1:kmeans算法
算法过程:Kmeans中文称为k-均值,步骤为:(1)它事先选定k个聚类中心,(2)然后看每个样本点距离那个聚类中心最近,则该样本就属于该聚类中心。(3)求每个聚类中心的样本的均值来替换该聚类中心(更新聚类中心)。(4)不断迭代(2)和(3), 直到收敛。
复杂度:Kmeans算法的时间复杂度为O(m*n*k*d),其中m为样本的个数,n为维数,k为迭代的次数,d为聚类中心的个数。空间复杂度为O(m*n)。
Costfunction: kmeans聚类是使得SSE(sum of squared error)达到最小,SSE公式表示为:
由于SSE为非凸函数,因此每次聚类并不一定能使SSE达到全局最小值,只能使其达到局部最优解。但是可以重复执行几次kmeans,选取SSE最小的一次作为最终的聚类结果。
2:python代码的实现
from numpy import * #加载数据 def loadDataSet(fileName): dataMat = [] fr = open(fileName) for line in fr.readlines(): curLine = line.strip().split('\t') fltLine = map(float, curLine) #变成float类型 dataMat.append(fltLine) return dataMat # 计算欧几里得距离 def distEclud(vecA, vecB): return sqrt(sum(power(vecA - vecB, 2))) #构建聚簇中心 def randCent(dataSet, k): n = shape(dataSet)[1] centroids = mat(zeros((k,n))) for j in range(n): minJ = min(dataSet[:,j]) maxJ = max(dataSet[:,j]) rangeJ = float(maxJ - minJ) centroids[:,j] = minJ + rangeJ * random.rand(k, 1) return centroids #k-means 聚类算法 def kMeans(dataSet, k, distMeans =distEclud, createCent = randCent): m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2))) #用于存放该样本属于哪类及质心距离 centroids = createCent(dataSet, k) clusterChanged = True while clusterChanged: clusterChanged = False; for i in range(m): minDist = inf; minIndex = -1; for j in range(k): distJI = distMeans(centroids[j,:], dataSet[i,:]) if distJI < minDist: minDist = distJI; minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True; clusterAssment[i,:] = minIndex,minDist**2 print centroids for cent in range(k): ptsInClust = dataSet[nonzero(clusterAssment[:,0].A == cent)[0]] # 去第一列等于cent的所有列 centroids[cent,:] = mean(ptsInClust, axis = 0) return centroids, clusterAssment
注意:度量聚类效果的指标是SSE(Sum of Squared Error, 误差平方和),即属于同一聚类中心的所有样本点到该聚类中心的距离和。通常有以下两种后处理的方法来提高算法的聚类性能。
(1) 将具有最大SSE值的簇划分成两个簇。
(2) 合并最近的质心或者合并两个使得SSE增幅最小的质心。
3:二分k-均值算法
为了克服k-均值算法收敛于局部最小值的问题,有人提出了另外一种称为二分k-均值的算法。该算法首先将所有点作为一个簇,然后将该簇一分为二。之后选择其中一个簇继续进行划分,选择哪一个簇进行划分有两种方法。(1)该划分是否可以最大程度地降低SSE的值。(2)选择SSE最大的簇进行划分。划分过程不断重复,直到簇的数目达到用户指定数目为止。
#2分kMeans算法 #两种方法:(1)是否可以最大程度的降低SSE的值 (2)选择SSE最大的簇进行划分 def bitKmeans(dataSet, k, distMeas=distEclud): m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2))) centroid0 = mean(dataSet, axis=0).tolist()[0] centList =[centroid0] for j in range(m): clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2 while (len(centList) < k): lowestSSE = inf #无穷大 for i in range(len(centList)): ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:] centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) sseSplit = sum(splitClustAss[:,1]) sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1]) print "sseSplit, and notSplit: ",sseSplit,sseNotSplit if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #二分后标签更新 bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit print 'the bestCentToSplit is: ',bestCentToSplit print 'the len of bestClustAss is: ', len(bestClustAss) centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0] #加入聚类中心 centList.append(bestNewCents[1,:].tolist()[0]) clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss #更新SSE的值(sum of squared errors) return mat(centList), clusterAssment
此外:还有层次聚类算法和密度聚类算法
层次聚类算法有两种,一种是凝聚的聚类算法,另外一种是层次的聚类算法
密度聚类算法用的比较少,这里不做详细讲解
DBSCAN是一个比较有代表性的密度聚类算法。