DeepLearning to digit recognizer in kaggle

DeepLearning to digit recongnizer in kaggle


         最近在看deeplearning,于是就找了kaggle上字符识别进行练习。这里我主要用两种工具箱进行求解,并比对两者的结果。两种工具箱分别是DeepLearningToolbox和caffe。DeeplearningToolbox源码解析见:http://blog.csdn.net/lu597203933/article/details/46576017

Caffe学习见:http://caffe.berkeleyvision.org/

 

一:DeeplearningToolbox

         DeeplearningToolbox基于matlab,非常的简单,读下源码,对于了解卷积神经网络等过程非常有帮助。这里我主要是对digit recongnizer给出的数据集进行预处理以使其适用于我们的deeplearningToolbox工具箱。主要包含两个.m文件,分别是predeal.m和cnntest.m文件。所需要做的就是改变addpath的路径,代码注释很详细,大家自己看。

代码

predeal.m

 

% use the deeplearnToolbox to solve the digit recongnizer in kaggle!
clear;clc
trainFile = 'train.csv';
testFile = 'test.csv';
fidId = fopen(trainFile);

M = csvread(trainFile, 1);   % 读取csv文件除第一行以外的所有数据
train_x = M(:, 2:end);    %第2列开始为数据data
label = M(:,1)';  %第一列为标签
label(label == 0) = 10;   % 不变为10 下面一句无法处理
train_y = full(sparse(label, 1:size(train_x, 1), 1));   %将标签变成一个矩阵

train_x = double(reshape(train_x',28,28,size(train_x, 1)))/255;  



fidId = fopen('test.csv');     %% 处理预测的数据
M = csvread(testFile, 1);   % 读取csv文件除第一行以外的所有数据
test_x = double(reshape(M',28,28,size(M, 1)))/255;  
clear fidId label testFile M testFile trainFile


addpath D:\DeepLearning\DeepLearnToolbox-master\data\      %路径需要改下
addpath D:\DeepLearning\DeepLearnToolbox-master\CNN\
addpath D:\DeepLearning\DeepLearnToolbox-master\util\

rand('state',0)
cnn.layers = {        %%% 设置各层feature maps个数及卷积模板大小等属性
    struct('type', 'i') %input layer
    struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
    struct('type', 's', 'scale', 2) %sub sampling layer
    struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
    struct('type', 's', 'scale', 2) %subsampling layer
};

opts.alpha = 0.01;   %迭代下降的速率
opts.batchsize = 50;   %每次选择50个样本进行更新  随机梯度下降,每次只选用50个样本进行更新
opts.numepochs = 25;   %迭代次数
cnn = cnnsetup(cnn, train_x, train_y);      %对各层参数进行初始化 包括权重和偏置
cnn = cnntrain(cnn, train_x, train_y, opts);  %训练的过程,包括bp算法及迭代过程

test_y = cnntest(cnn, test_x);      %对测试数据集进行测试
test_y(test_y == 10) = 0;      %标签10 需要反转为0
test_y = test_y';
M = [(1:length(test_y))' test_y(:)];  
csvwrite('test_y.csv', M);
figure; plot(cnn.rL);

cnntest.m

 

  function [test_y] = cnntest(net, x)
    %  feedforward
    net = cnnff(net, x);
    [~, test_y] = max(net.o);
end

结果:用deeplearningToolbox得到的结果并不是很好,只有0.94586

 

二:caffe to digit recongnizer

         虽然caffe自带了mnist对例子对字符进行处理,但是官网给出的数据是二进制的文件,得到的结果也只是一个简单的准确率,所以不能无限制的套用。步骤如下:

1:将给定csv数据转变成lmdb格式

这里我在mnist的文件夹下写了一个convert_data_to_lmdb.cpp的程序对数据进行处理:

代码如下:

 

#include <iostream>
#include <string>
#include <sstream>
#include <gflags/gflags.h>


#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"

#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/rng.hpp"

using namespace caffe;
using namespace std;
using std::pair;
using boost::scoped_ptr;

/* edited by Zack
 * argv[1] the input file, argv[2] the output file*/

DEFINE_string(backend, "lmdb", "The backend for storing the result");  // get Flags_backend == lmdb

int main(int argc, char **argv){
	::google::InitGoogleLogging(argv[0]);

	#ifndef GFLAGS_GFLAGS_H_
	  namespace gflags = google;
	#endif

	if(argc < 3){
		LOG(ERROR)<< "please check the input arguments!";
		return 1;
	}
	ifstream infile(argv[1]);
	if(!infile){
		LOG(ERROR)<< "please check the input arguments!";
		return 1;
	}
	string str;
	int count = 0;
	int rows = 28;
	int cols = 28;
	unsigned char *buffer = new  unsigned char[rows*cols];
	stringstream ss;

	Datum datum;             // this data structure store the data and label
	datum.set_channels(1);    // the channels
	datum.set_height(rows);    // rows
	datum.set_width(cols);     // cols

	scoped_ptr<db::DB> db(db::GetDB(FLAGS_backend));         // new DB object
	db->Open(argv[2], db::NEW);                    // open the lmdb file to store the data
	scoped_ptr<db::Transaction> txn(db->NewTransaction());   // new Transaction object to put and commit the data

	const int kMaxKeyLength = 256;           // to save the key
	char key_cstr[kMaxKeyLength];

	bool flag= false;
	while(getline(infile, str)){
		if(flag == false){
			flag = true;
			continue;
		}
		int beg = 0;
		int end = 0;
		int str_index = 0;
		//test  need to add this----------1
		//datum.set_label(0);
		while((end = str.find_first_of(',', beg)) != string::npos){
			//cout << end << endl;
			string dig_str = str.substr(beg, end - beg);
			int pixes;
			ss.clear();
			ss << dig_str;
			ss >> pixes;
			// test need to delete this--------------2
			if(beg == 0){
				datum.set_label(pixes);
				beg = ++ end;
				continue;
			}
			buffer[str_index++] = (unsigned char)pixes;
			beg = ++end;
		}
		string dig_str = str.substr(beg);
		int pixes;
		ss.clear();
		ss << dig_str;
		ss >> pixes;
		buffer[str_index++] = (unsigned char)pixes;
		datum.set_data(buffer, rows*cols);

		int length = snprintf(key_cstr, kMaxKeyLength, "%08d", count);

		    // Put in db
		string out;
		CHECK(datum.SerializeToString(&out));              // serialize to string
		txn->Put(string(key_cstr, length), out);        // put it, both the key and value

		if (++count % 1000 == 0) {       // to commit every 1000 iteration
		  // Commit db
		  txn->Commit();
		  txn.reset(db->NewTransaction());
		  LOG(ERROR) << "Processed " << count << " files.";
		}

	}
	// write the last batch
	  if (count % 1000 != 0) {            // commit the last batch
		txn->Commit();
		LOG(ERROR) << "Processed " << count << " files.";
	  }

	return 0;
}

然后我们执行make all –j8对代码进行编译。这样在build文件夹下就会生成相应的二进制文件了。

如图:

 DeepLearning to digit recognizer in kaggle_第1张图片

然后执行./build/examples/mnist/convert_data_to_lmdb.bin examples/mnist/kaggle/data/train.csvexamples/mnist/kaggle/mnist_train_lmdb --backend=lmdb

就可以得到得到训练文件的lmdb格式文件了。对于测试test.csv,由于test.csv没有标签,所以需要对代码进行细微调整,2处调整已在上述代码中标注了。

 

然后同样执行make all –j8,再执行./build/examples/mnist/convert_data_to_lmdb.bin examples/mnist/kaggle/data/test.csvexamples/mnist/kaggle/mnist_test_lmdb --backend=lmdb

就可以得到所对应的测试数据的lmdb格式文件了。

 

 

2:用训练数据进行训练得到model

Caffe在训练model的时候,代码需要在每隔test_iter时间就要对测试数据集进行测试,因此我们这里可以用train.csv的前1000条数据制作一个交叉验证的数据集lmdb, 过程和上面一样。

 

         分别将mnist目录下面的lenet_solver.prototxt和lenet_train_test.prototxt拷贝到kaggle目录下面,并对相应的包含文件所在目录和对应的batch size进行修改。具体见:下载地址。

然后执行./build/tools/caffe train –solver=examples/mnist/kaggle/lenet_solver.prototxt,这样就可以得到我们的lenet_iter_10000.caffemodel了。

 

3:提取测试集prob层的特征。

         这里我们使用tools文件下的extract_features.cpp的源文件,但是该源文件产生的结果是lmdb的格式,因此我对源码进行了修改如下:

 

#include <stdio.h>  // for snprintf
#include <string>
#include <vector>
#include <fstream>

#include "boost/algorithm/string.hpp"
#include "google/protobuf/text_format.h"

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/io.hpp"
#include "caffe/vision_layers.hpp"

using caffe::Blob;
using caffe::Caffe;
using caffe::Datum;
using caffe::Net;
using boost::shared_ptr;
using std::string;
namespace db = caffe::db;

template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv);

int main(int argc, char** argv) {
  return feature_extraction_pipeline<float>(argc, argv);
//  return feature_extraction_pipeline<double>(argc, argv);
}

template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv) {
  ::google::InitGoogleLogging(argv[0]);
  const int num_required_args = 7;     /// the parameters must be not less 7
  if (argc < num_required_args) {
    LOG(ERROR)<<
    "This program takes in a trained network and an input data layer, and then"
    " extract features of the input data produced by the net.\n"
    "Usage: extract_features  pretrained_net_param"
    "  feature_extraction_proto_file  extract_feature_blob_name1[,name2,...]"
    "  save_feature_dataset_name1[,name2,...]  num_mini_batches  db_type"
    "  [CPU/GPU] [DEVICE_ID=0]\n"
    "Note: you can extract multiple features in one pass by specifying"
    " multiple feature blob names and dataset names seperated by ','."
    " The names cannot contain white space characters and the number of blobs"
    " and datasets must be equal.";
    return 1;
  }
  int arg_pos = num_required_args;     //the necessary nums of parameters

  arg_pos = num_required_args;
  if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) {          // whether use GPU------ -gpu 0
    LOG(ERROR)<< "Using GPU";
    uint device_id = 0;
    if (argc > arg_pos + 1) {
      device_id = atoi(argv[arg_pos + 1]);
      CHECK_GE(device_id, 0);
    }
    LOG(ERROR) << "Using Device_id=" << device_id;
    Caffe::SetDevice(device_id);
    Caffe::set_mode(Caffe::GPU);
  } else {
    LOG(ERROR) << "Using CPU";
    Caffe::set_mode(Caffe::CPU);
  }

  arg_pos = 0;  // the name of the executable
  std::string pretrained_binary_proto(argv[++arg_pos]);      // the mode had been trained

  // Expected prototxt contains at least one data layer such as
  //  the layer data_layer_name and one feature blob such as the
  //  fc7 top blob to extract features.
  /*
   layers {
     name: "data_layer_name"
     type: DATA
     data_param {
       source: "/path/to/your/images/to/extract/feature/images_leveldb"
       mean_file: "/path/to/your/image_mean.binaryproto"
       batch_size: 128
       crop_size: 227
       mirror: false
     }
     top: "data_blob_name"
     top: "label_blob_name"
   }
   layers {
     name: "drop7"
     type: DROPOUT
     dropout_param {
       dropout_ratio: 0.5
     }
     bottom: "fc7"
     top: "fc7"
   }
   */
  std::string feature_extraction_proto(argv[++arg_pos]);    // get the net structure
  shared_ptr<Net<Dtype> > feature_extraction_net(
      new Net<Dtype>(feature_extraction_proto, caffe::TEST));               //new net object  and set each layers------feature_extraction_net
  feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto);           // init the weights

  std::string extract_feature_blob_names(argv[++arg_pos]);          //exact which blob's feature
  std::vector<std::string> blob_names;
  boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(","));   //you can exact many blobs' features and to store them in different dirname

  std::string save_feature_dataset_names(argv[++arg_pos]);   // to store the features
  std::vector<std::string> dataset_names;
  boost::split(dataset_names, save_feature_dataset_names,         // each dataset_names to store one blob's feature
               boost::is_any_of(","));
  CHECK_EQ(blob_names.size(), dataset_names.size()) <<
      " the number of blob names and dataset names must be equal";
  size_t num_features = blob_names.size();     // how many features you exact

  for (size_t i = 0; i < num_features; i++) {
    CHECK(feature_extraction_net->has_blob(blob_names[i]))
        << "Unknown feature blob name " << blob_names[i]
        << " in the network " << feature_extraction_proto;
  }

  int num_mini_batches = atoi(argv[++arg_pos]);            // each exact num_mini_batches of images

  // init the DB and Transaction for all blobs you want to extract features
  std::vector<shared_ptr<db::DB> > feature_dbs;               // new DB object, is a vector  maybe has many blogs' feature
  std::vector<shared_ptr<db::Transaction> > txns;            // new Transaction object, is a vectore maybe has many blob's feature


  // edit by Zack
   //std::string strfile = "/home/hadoop/caffe/textileImage/features/probTest";
  std::string strfile = argv[argc-1];
  std::vector<std::ofstream*> vec(num_features, 0);

  const char* db_type = argv[++arg_pos];                  //the data to store style == lmdb
  for (size_t i = 0; i < num_features; ++i) {
    LOG(INFO)<< "Opening dataset " << dataset_names[i];               // dataset_name[i] to store the feature which type is lmdb
    shared_ptr<db::DB> db(db::GetDB(db_type));             // the type of the db
    db->Open(dataset_names.at(i), db::NEW);          // open the dir to store the feature
    feature_dbs.push_back(db);             // put the db to the vector
    shared_ptr<db::Transaction> txn(db->NewTransaction());     // the transaction to the db
    txns.push_back(txn);                // put the transaction to the vector

// edit by Zack

    std::stringstream ss;
    ss.clear();
    string index;
    ss << i;
    ss >> index;
    std::string str = strfile + index + ".txt";
    vec[i] = new std::ofstream(str.c_str());
  }

  LOG(ERROR)<< "Extacting Features";

  Datum datum;
  const int kMaxKeyStrLength = 100;
  char key_str[kMaxKeyStrLength];      // to store the key
  std::vector<Blob<float>*> input_vec;
  std::vector<int> image_indices(num_features, 0);   /// how many blogs' feature you exact


  for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
    feature_extraction_net->Forward(input_vec);
    for (int i = 0; i < num_features; ++i) {    // to exact the blobs' name  maybe fc7 fc8
      const shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net
          ->blob_by_name(blob_names[i]);
      int batch_size = feature_blob->num();     // the nums of images-------batch size
      int dim_features = feature_blob->count() / batch_size;    // this dim of this feature of each image in this blob
      const Dtype* feature_blob_data;   // float is the features
      for (int n = 0; n < batch_size; ++n) {
        datum.set_height(feature_blob->height());     // set the height
        datum.set_width(feature_blob->width());     // set the width
        datum.set_channels(feature_blob->channels());    // set the channel
        datum.clear_data();               // clear data
        datum.clear_float_data();        // clear float_data
        feature_blob_data = feature_blob->cpu_data() +
            feature_blob->offset(n);    //the features of  which image
        for (int d = 0; d < dim_features; ++d) {
          datum.add_float_data(feature_blob_data[d]);
          (*vec[i]) << feature_blob_data[d] << " ";          // save the features
        }
        (*vec[i]) << std::endl;
        //LOG(ERROR)<< "dim" << dim_features;
        int length = snprintf(key_str, kMaxKeyStrLength, "%010d",
            image_indices[i]);       // key  di ji ge tupian
        string out;
        CHECK(datum.SerializeToString(&out));    // serialize to string
        txns.at(i)->Put(std::string(key_str, length), out);       // put to transaction
        ++image_indices[i];       // key++
        if (image_indices[i] % 1000 == 0) {    // when it reach to 1000 ,we commit it
          txns.at(i)->Commit();
          txns.at(i).reset(feature_dbs.at(i)->NewTransaction());
          LOG(ERROR)<< "Extracted features of " << image_indices[i] <<
              " query images for feature blob " << blob_names[i];
        }
      }  // for (int n = 0; n < batch_size; ++n)
    }  // for (int i = 0; i < num_features; ++i)
  }  // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
  // write the last batch
  for (int i = 0; i < num_features; ++i) {
    if (image_indices[i] % 1000 != 0) {     // commit the last path images
      txns.at(i)->Commit();
    }
    // edit by Zack
      vec[i]->close();
      delete vec[i];

    LOG(ERROR)<< "Extracted features of " << image_indices[i] <<
        " query images for feature blob " << blob_names[i];
    feature_dbs.at(i)->Close();
  }

  LOG(ERROR)<< "Successfully extracted the features!";
  return 0;
}

最后将得到的prob层(即最后得到的概率)存入到了txt中了。

 

此外对网络结构进行了调整,只需要预测,网络中的参数都可以去掉不要了,,

deploy.prototxt代码如下:

 

name: "LeNet"
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/kaggle/mnist_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
 
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
   
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"

  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
   
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  
  inner_product_param {
    num_output: 500
    
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"

  inner_product_param {
    num_output: 10
   
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "ip2"
  top: "prob"
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "prob"
  bottom: "label"
  top: "accuracy"
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

然后执行

./build/tools/extract_features.bin examples/mnist/kaggle/lenet_iter_10000.caffemodel examples/mnist/kaggle/deploy.prototxt prob examples/mnist/kaggle/features 280 lmdb /home/hadoop/caffe/caffe-master/examples/mnist/kaggle/feature

其中280为迭代次数,因为在deploy.prototxt中batch_size设为了100,故就为总共的测试数据集的大小=28000. /home/hadoop/caffe/caffe-master/examples/mnist/kaggle/feature为最终的提取特征存放在txt保存的路径。examples/mnist/kaggle/lenet_iter_10000.caffemodel为训练的权重参数,examples/mnist/kaggle/deploy.prototxt为网络结构。

 

4:对得到的txt进行后处理

通过上面三个步骤,我们就可以得到feture0.txt,存放的数据位28000*10大小,对应每个样本属于哪一类发生的概率。然后执行以下matlab代码就可以得到kaggle所需要的提交结果了。最后的准确率为0.98986,排名也提升了400+,great!!

 

% caffe toolbox, the postprocessing of the data 
clear;clc;
feature = load('feature0.txt');
feature = feature';
[~,test_y] = max(feature);
[M,N] = size(test_y);
test_y = test_y - repmat([1], M, N);
test_y = test_y';
M = [(1:length(test_y))' test_y(:)];  
csvwrite('test_y3.csv', M);


所有文件代码下载见:https://github.com/zack6514/zackcoding

你可能感兴趣的:(Kaggle,caffe,digit,recongnizer)