最近在看deeplearning,于是就找了kaggle上字符识别进行练习。这里我主要用两种工具箱进行求解,并比对两者的结果。两种工具箱分别是DeepLearningToolbox和caffe。DeeplearningToolbox源码解析见:http://blog.csdn.net/lu597203933/article/details/46576017
Caffe学习见:http://caffe.berkeleyvision.org/
DeeplearningToolbox基于matlab,非常的简单,读下源码,对于了解卷积神经网络等过程非常有帮助。这里我主要是对digit recongnizer给出的数据集进行预处理以使其适用于我们的deeplearningToolbox工具箱。主要包含两个.m文件,分别是predeal.m和cnntest.m文件。所需要做的就是改变addpath的路径,代码注释很详细,大家自己看。
代码
predeal.m
% use the deeplearnToolbox to solve the digit recongnizer in kaggle! clear;clc trainFile = 'train.csv'; testFile = 'test.csv'; fidId = fopen(trainFile); M = csvread(trainFile, 1); % 读取csv文件除第一行以外的所有数据 train_x = M(:, 2:end); %第2列开始为数据data label = M(:,1)'; %第一列为标签 label(label == 0) = 10; % 不变为10 下面一句无法处理 train_y = full(sparse(label, 1:size(train_x, 1), 1)); %将标签变成一个矩阵 train_x = double(reshape(train_x',28,28,size(train_x, 1)))/255; fidId = fopen('test.csv'); %% 处理预测的数据 M = csvread(testFile, 1); % 读取csv文件除第一行以外的所有数据 test_x = double(reshape(M',28,28,size(M, 1)))/255; clear fidId label testFile M testFile trainFile addpath D:\DeepLearning\DeepLearnToolbox-master\data\ %路径需要改下 addpath D:\DeepLearning\DeepLearnToolbox-master\CNN\ addpath D:\DeepLearning\DeepLearnToolbox-master\util\ rand('state',0) cnn.layers = { %%% 设置各层feature maps个数及卷积模板大小等属性 struct('type', 'i') %input layer struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %sub sampling layer struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %subsampling layer }; opts.alpha = 0.01; %迭代下降的速率 opts.batchsize = 50; %每次选择50个样本进行更新 随机梯度下降,每次只选用50个样本进行更新 opts.numepochs = 25; %迭代次数 cnn = cnnsetup(cnn, train_x, train_y); %对各层参数进行初始化 包括权重和偏置 cnn = cnntrain(cnn, train_x, train_y, opts); %训练的过程,包括bp算法及迭代过程 test_y = cnntest(cnn, test_x); %对测试数据集进行测试 test_y(test_y == 10) = 0; %标签10 需要反转为0 test_y = test_y'; M = [(1:length(test_y))' test_y(:)]; csvwrite('test_y.csv', M); figure; plot(cnn.rL);
cnntest.m
function [test_y] = cnntest(net, x) % feedforward net = cnnff(net, x); [~, test_y] = max(net.o); end
结果:用deeplearningToolbox得到的结果并不是很好,只有0.94586
虽然caffe自带了mnist对例子对字符进行处理,但是官网给出的数据是二进制的文件,得到的结果也只是一个简单的准确率,所以不能无限制的套用。步骤如下:
这里我在mnist的文件夹下写了一个convert_data_to_lmdb.cpp的程序对数据进行处理:
代码如下:
#include <iostream> #include <string> #include <sstream> #include <gflags/gflags.h> #include "boost/scoped_ptr.hpp" #include "gflags/gflags.h" #include "glog/logging.h" #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" #include "caffe/util/io.hpp" #include "caffe/util/rng.hpp" using namespace caffe; using namespace std; using std::pair; using boost::scoped_ptr; /* edited by Zack * argv[1] the input file, argv[2] the output file*/ DEFINE_string(backend, "lmdb", "The backend for storing the result"); // get Flags_backend == lmdb int main(int argc, char **argv){ ::google::InitGoogleLogging(argv[0]); #ifndef GFLAGS_GFLAGS_H_ namespace gflags = google; #endif if(argc < 3){ LOG(ERROR)<< "please check the input arguments!"; return 1; } ifstream infile(argv[1]); if(!infile){ LOG(ERROR)<< "please check the input arguments!"; return 1; } string str; int count = 0; int rows = 28; int cols = 28; unsigned char *buffer = new unsigned char[rows*cols]; stringstream ss; Datum datum; // this data structure store the data and label datum.set_channels(1); // the channels datum.set_height(rows); // rows datum.set_width(cols); // cols scoped_ptr<db::DB> db(db::GetDB(FLAGS_backend)); // new DB object db->Open(argv[2], db::NEW); // open the lmdb file to store the data scoped_ptr<db::Transaction> txn(db->NewTransaction()); // new Transaction object to put and commit the data const int kMaxKeyLength = 256; // to save the key char key_cstr[kMaxKeyLength]; bool flag= false; while(getline(infile, str)){ if(flag == false){ flag = true; continue; } int beg = 0; int end = 0; int str_index = 0; //test need to add this----------1 //datum.set_label(0); while((end = str.find_first_of(',', beg)) != string::npos){ //cout << end << endl; string dig_str = str.substr(beg, end - beg); int pixes; ss.clear(); ss << dig_str; ss >> pixes; // test need to delete this--------------2 if(beg == 0){ datum.set_label(pixes); beg = ++ end; continue; } buffer[str_index++] = (unsigned char)pixes; beg = ++end; } string dig_str = str.substr(beg); int pixes; ss.clear(); ss << dig_str; ss >> pixes; buffer[str_index++] = (unsigned char)pixes; datum.set_data(buffer, rows*cols); int length = snprintf(key_cstr, kMaxKeyLength, "%08d", count); // Put in db string out; CHECK(datum.SerializeToString(&out)); // serialize to string txn->Put(string(key_cstr, length), out); // put it, both the key and value if (++count % 1000 == 0) { // to commit every 1000 iteration // Commit db txn->Commit(); txn.reset(db->NewTransaction()); LOG(ERROR) << "Processed " << count << " files."; } } // write the last batch if (count % 1000 != 0) { // commit the last batch txn->Commit(); LOG(ERROR) << "Processed " << count << " files."; } return 0; }
然后我们执行make all –j8对代码进行编译。这样在build文件夹下就会生成相应的二进制文件了。
如图:
然后执行./build/examples/mnist/convert_data_to_lmdb.bin examples/mnist/kaggle/data/train.csvexamples/mnist/kaggle/mnist_train_lmdb --backend=lmdb
就可以得到得到训练文件的lmdb格式文件了。对于测试test.csv,由于test.csv没有标签,所以需要对代码进行细微调整,2处调整已在上述代码中标注了。
然后同样执行make all –j8,再执行./build/examples/mnist/convert_data_to_lmdb.bin examples/mnist/kaggle/data/test.csvexamples/mnist/kaggle/mnist_test_lmdb --backend=lmdb
就可以得到所对应的测试数据的lmdb格式文件了。
Caffe在训练model的时候,代码需要在每隔test_iter时间就要对测试数据集进行测试,因此我们这里可以用train.csv的前1000条数据制作一个交叉验证的数据集lmdb, 过程和上面一样。
分别将mnist目录下面的lenet_solver.prototxt和lenet_train_test.prototxt拷贝到kaggle目录下面,并对相应的包含文件所在目录和对应的batch size进行修改。具体见:下载地址。
然后执行./build/tools/caffe train –solver=examples/mnist/kaggle/lenet_solver.prototxt,这样就可以得到我们的lenet_iter_10000.caffemodel了。
这里我们使用tools文件下的extract_features.cpp的源文件,但是该源文件产生的结果是lmdb的格式,因此我对源码进行了修改如下:
#include <stdio.h> // for snprintf #include <string> #include <vector> #include <fstream> #include "boost/algorithm/string.hpp" #include "google/protobuf/text_format.h" #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/net.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" #include "caffe/util/io.hpp" #include "caffe/vision_layers.hpp" using caffe::Blob; using caffe::Caffe; using caffe::Datum; using caffe::Net; using boost::shared_ptr; using std::string; namespace db = caffe::db; template<typename Dtype> int feature_extraction_pipeline(int argc, char** argv); int main(int argc, char** argv) { return feature_extraction_pipeline<float>(argc, argv); // return feature_extraction_pipeline<double>(argc, argv); } template<typename Dtype> int feature_extraction_pipeline(int argc, char** argv) { ::google::InitGoogleLogging(argv[0]); const int num_required_args = 7; /// the parameters must be not less 7 if (argc < num_required_args) { LOG(ERROR)<< "This program takes in a trained network and an input data layer, and then" " extract features of the input data produced by the net.\n" "Usage: extract_features pretrained_net_param" " feature_extraction_proto_file extract_feature_blob_name1[,name2,...]" " save_feature_dataset_name1[,name2,...] num_mini_batches db_type" " [CPU/GPU] [DEVICE_ID=0]\n" "Note: you can extract multiple features in one pass by specifying" " multiple feature blob names and dataset names seperated by ','." " The names cannot contain white space characters and the number of blobs" " and datasets must be equal."; return 1; } int arg_pos = num_required_args; //the necessary nums of parameters arg_pos = num_required_args; if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) { // whether use GPU------ -gpu 0 LOG(ERROR)<< "Using GPU"; uint device_id = 0; if (argc > arg_pos + 1) { device_id = atoi(argv[arg_pos + 1]); CHECK_GE(device_id, 0); } LOG(ERROR) << "Using Device_id=" << device_id; Caffe::SetDevice(device_id); Caffe::set_mode(Caffe::GPU); } else { LOG(ERROR) << "Using CPU"; Caffe::set_mode(Caffe::CPU); } arg_pos = 0; // the name of the executable std::string pretrained_binary_proto(argv[++arg_pos]); // the mode had been trained // Expected prototxt contains at least one data layer such as // the layer data_layer_name and one feature blob such as the // fc7 top blob to extract features. /* layers { name: "data_layer_name" type: DATA data_param { source: "/path/to/your/images/to/extract/feature/images_leveldb" mean_file: "/path/to/your/image_mean.binaryproto" batch_size: 128 crop_size: 227 mirror: false } top: "data_blob_name" top: "label_blob_name" } layers { name: "drop7" type: DROPOUT dropout_param { dropout_ratio: 0.5 } bottom: "fc7" top: "fc7" } */ std::string feature_extraction_proto(argv[++arg_pos]); // get the net structure shared_ptr<Net<Dtype> > feature_extraction_net( new Net<Dtype>(feature_extraction_proto, caffe::TEST)); //new net object and set each layers------feature_extraction_net feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto); // init the weights std::string extract_feature_blob_names(argv[++arg_pos]); //exact which blob's feature std::vector<std::string> blob_names; boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(",")); //you can exact many blobs' features and to store them in different dirname std::string save_feature_dataset_names(argv[++arg_pos]); // to store the features std::vector<std::string> dataset_names; boost::split(dataset_names, save_feature_dataset_names, // each dataset_names to store one blob's feature boost::is_any_of(",")); CHECK_EQ(blob_names.size(), dataset_names.size()) << " the number of blob names and dataset names must be equal"; size_t num_features = blob_names.size(); // how many features you exact for (size_t i = 0; i < num_features; i++) { CHECK(feature_extraction_net->has_blob(blob_names[i])) << "Unknown feature blob name " << blob_names[i] << " in the network " << feature_extraction_proto; } int num_mini_batches = atoi(argv[++arg_pos]); // each exact num_mini_batches of images // init the DB and Transaction for all blobs you want to extract features std::vector<shared_ptr<db::DB> > feature_dbs; // new DB object, is a vector maybe has many blogs' feature std::vector<shared_ptr<db::Transaction> > txns; // new Transaction object, is a vectore maybe has many blob's feature // edit by Zack //std::string strfile = "/home/hadoop/caffe/textileImage/features/probTest"; std::string strfile = argv[argc-1]; std::vector<std::ofstream*> vec(num_features, 0); const char* db_type = argv[++arg_pos]; //the data to store style == lmdb for (size_t i = 0; i < num_features; ++i) { LOG(INFO)<< "Opening dataset " << dataset_names[i]; // dataset_name[i] to store the feature which type is lmdb shared_ptr<db::DB> db(db::GetDB(db_type)); // the type of the db db->Open(dataset_names.at(i), db::NEW); // open the dir to store the feature feature_dbs.push_back(db); // put the db to the vector shared_ptr<db::Transaction> txn(db->NewTransaction()); // the transaction to the db txns.push_back(txn); // put the transaction to the vector // edit by Zack std::stringstream ss; ss.clear(); string index; ss << i; ss >> index; std::string str = strfile + index + ".txt"; vec[i] = new std::ofstream(str.c_str()); } LOG(ERROR)<< "Extacting Features"; Datum datum; const int kMaxKeyStrLength = 100; char key_str[kMaxKeyStrLength]; // to store the key std::vector<Blob<float>*> input_vec; std::vector<int> image_indices(num_features, 0); /// how many blogs' feature you exact for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) { feature_extraction_net->Forward(input_vec); for (int i = 0; i < num_features; ++i) { // to exact the blobs' name maybe fc7 fc8 const shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net ->blob_by_name(blob_names[i]); int batch_size = feature_blob->num(); // the nums of images-------batch size int dim_features = feature_blob->count() / batch_size; // this dim of this feature of each image in this blob const Dtype* feature_blob_data; // float is the features for (int n = 0; n < batch_size; ++n) { datum.set_height(feature_blob->height()); // set the height datum.set_width(feature_blob->width()); // set the width datum.set_channels(feature_blob->channels()); // set the channel datum.clear_data(); // clear data datum.clear_float_data(); // clear float_data feature_blob_data = feature_blob->cpu_data() + feature_blob->offset(n); //the features of which image for (int d = 0; d < dim_features; ++d) { datum.add_float_data(feature_blob_data[d]); (*vec[i]) << feature_blob_data[d] << " "; // save the features } (*vec[i]) << std::endl; //LOG(ERROR)<< "dim" << dim_features; int length = snprintf(key_str, kMaxKeyStrLength, "%010d", image_indices[i]); // key di ji ge tupian string out; CHECK(datum.SerializeToString(&out)); // serialize to string txns.at(i)->Put(std::string(key_str, length), out); // put to transaction ++image_indices[i]; // key++ if (image_indices[i] % 1000 == 0) { // when it reach to 1000 ,we commit it txns.at(i)->Commit(); txns.at(i).reset(feature_dbs.at(i)->NewTransaction()); LOG(ERROR)<< "Extracted features of " << image_indices[i] << " query images for feature blob " << blob_names[i]; } } // for (int n = 0; n < batch_size; ++n) } // for (int i = 0; i < num_features; ++i) } // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) // write the last batch for (int i = 0; i < num_features; ++i) { if (image_indices[i] % 1000 != 0) { // commit the last path images txns.at(i)->Commit(); } // edit by Zack vec[i]->close(); delete vec[i]; LOG(ERROR)<< "Extracted features of " << image_indices[i] << " query images for feature blob " << blob_names[i]; feature_dbs.at(i)->Close(); } LOG(ERROR)<< "Successfully extracted the features!"; return 0; }
最后将得到的prob层(即最后得到的概率)存入到了txt中了。
此外对网络结构进行了调整,只需要预测,网络中的参数都可以去掉不要了,,
deploy.prototxt代码如下:
name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" transform_param { scale: 0.00390625 } data_param { source: "examples/mnist/kaggle/mnist_test_lmdb" batch_size: 100 backend: LMDB } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" convolution_param { num_output: 20 kernel_size: 5 stride: 1 } } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" convolution_param { num_output: 50 kernel_size: 5 stride: 1 } } layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "ip1" type: "InnerProduct" bottom: "pool2" top: "ip1" inner_product_param { num_output: 500 } } layer { name: "relu1" type: "ReLU" bottom: "ip1" top: "ip1" } layer { name: "ip2" type: "InnerProduct" bottom: "ip1" top: "ip2" inner_product_param { num_output: 10 } } layer { name: "prob" type: "Softmax" bottom: "ip2" top: "prob" } layer { name: "accuracy" type: "Accuracy" bottom: "prob" bottom: "label" top: "accuracy" } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip2" bottom: "label" top: "loss" }
然后执行
./build/tools/extract_features.bin examples/mnist/kaggle/lenet_iter_10000.caffemodel examples/mnist/kaggle/deploy.prototxt prob examples/mnist/kaggle/features 280 lmdb /home/hadoop/caffe/caffe-master/examples/mnist/kaggle/feature
其中280为迭代次数,因为在deploy.prototxt中batch_size设为了100,故就为总共的测试数据集的大小=28000. /home/hadoop/caffe/caffe-master/examples/mnist/kaggle/feature为最终的提取特征存放在txt保存的路径。examples/mnist/kaggle/lenet_iter_10000.caffemodel为训练的权重参数,examples/mnist/kaggle/deploy.prototxt为网络结构。
通过上面三个步骤,我们就可以得到feture0.txt,存放的数据位28000*10大小,对应每个样本属于哪一类发生的概率。然后执行以下matlab代码就可以得到kaggle所需要的提交结果了。最后的准确率为0.98986,排名也提升了400+,great!!
% caffe toolbox, the postprocessing of the data clear;clc; feature = load('feature0.txt'); feature = feature'; [~,test_y] = max(feature); [M,N] = size(test_y); test_y = test_y - repmat([1], M, N); test_y = test_y'; M = [(1:length(test_y))' test_y(:)]; csvwrite('test_y3.csv', M);
所有文件代码下载见:https://github.com/zack6514/zackcoding