Spark 启动方式

1spark 提交任务方式


1)、spark on yarn

$ ./bin/spark-submit--class org.apache.spark.examples.SparkPi \

    --master yarn-cluster \

    --num-executors 3 \

    --driver-memory 4g \

    --executor-memory 2g \

    --executor-cores 1 \

    --queue thequeue \

    lib/spark-examples*.jar \

    10

 

2)、spark on yarn提交任务时:在yarn-cluster的集群模式,驱动程序运行在不同的机器比客户端,所以sparkcontext.addjar不会解决的是客户端的本地文件盒。在可sparkcontext.addjar客户端文件,包括他们的——jars选项在启动命令。

$ ./bin/spark-submit--class my.main.Class \

    --master yarn-cluster \

    --jarsmy-other-jar.jar,my-other-other-jar.jar

    my-main-jar.jar

    app_arg1 app_arg2

 

测试spark自带的Pi程序,

./bin/spark-submit--class org.apache.spark.examples.SparkPi \

--master yarn-cluster\

--num-executors 1 \

--driver-memory 1g \

--executor-memory 1g \

--executor-cores 1 \

lib/spark-examples*.jar\

 

3)、spark-submit

spark-submit测试PI

Sparkbin子目录中的spark-submit脚本是用于提交程序到集群中运行的工具,我们使用此工具做一个关于pi的计算。命令如下:

./bin/spark-submit --master spark://spark113:7077 \ 

--class org.apache.spark.examples.SparkPi \  --name Spark-Pi --executor-memory 400M \  --driver-memory 512M \  

/home/hadoop/spark-1.0.0/examples/target/scala-2.10/spark-examples-1.0.0-hadoop2.0.0-cdh4.5.0.jar    

 

spark-submit 测试:

/home/hadoop/spark/spark-1.3.0-bin-hadoop2.4/bin/spark-submit\

--classorg.apache.spark.examples.SparkPi \

--masterspark://192.168.6.71:7077 \

--executor-memory100m \

--executor-cores 1 \

1000

 

4)、以集群的模式启动spark-shell

./spark-shell  --master spark://hadoop1:7077 --executor-memory  500m


 

2Spark 启动方式:

1)、本地模式启动spark./spark-shell  --master local[2]        注意:可以指定多个线程

2)、集群模式启动spark

[hadoop@hadoop1 spark-1.3.0-bin-hadoop2.4]$ ./bin/spark-shell --masterspark://hadoop1:7077 --executor-memory500m    注意:此启动方式指定了spark-shell 运行时暂用的每个机器上executor 的内存为500m

spark-shell --masteryarn-client --driver-memory 10g --num-executors 20 --executor-memory 20g--executor-cores 3 --queue spark

 

3)、在Python解释器中启动spark bin/pyspark--master local[3]

4)、R语言的解释器中启动spark bin/sparkR --master local[2]

5)、yarn的方式启动spark  yarn集群启动spark$ ./bin/spark-shell --master yarn-cluster  

                                                             yarn客户端启动spark$ ./bin/spark-shell --masteryarn-client

spark-sql --masteryarn-client --driver-memory 10g --num-executors 20 --executor-memory 20g--executor-cores 3 --queue spark

spark-sql --masterspark://master:7077 --driver-memory 10g --executor-memory 20g --driver-cores 3 

你可能感兴趣的:(spark)