- Java:爬虫框架
dingcho
Javajava爬虫
一、ApacheNutch2【参考地址】Nutch是一个开源Java实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。Nutch致力于让每个人能很容易,同时花费很少就可以配置世界一流的Web搜索引擎.为了完成这一宏伟的目标,Nutch必须能够做到:每个月取几十亿网页为这些网页维护一个索引对索引文件进行每秒上千次的搜索提供高质量的搜索结果简单来说Nutch支持分
- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- python连接es_Elasticsearch --- 3. ik中文分词器, python操作es
weixin_39962285
python连接es
一.IK中文分词器1.下载安装2.测试#显示结果{"tokens":[{"token":"上海","start_offset":0,"end_offset":2,"type":"CN_WORD","position":0},{"token":"自来水","start_offset":2,"end_offset":5,"type":"CN_WORD","position":1},{"token":"
- Python爬虫实战
weixin_34007879
爬虫jsonjava
引言网络爬虫是抓取互联网信息的利器,成熟的开源爬虫框架主要集中于两种语言Java和Python。主流的开源爬虫框架包括:1.分布式爬虫框架:Nutch2.Java单机爬虫框架:Crawler4j,WebMagic,WebCollector、Heritrix3.python单机爬虫框架:scrapy、pyspiderNutch是专为搜索引擎设计的的分布式开源框架,上手难度高,开发复杂,基本无法满足快
- 自然语言处理系列八》中文分词》规则分词》正向最大匹配法
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据算法人工智能编程语言java自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列八规则分词正向最大匹配法总结自然语言处理系列八规则分词规则分词是基于字典、词库匹配的分词方法(机械分词法),其实现的主要思想是:切分语句时,将语句特定长的字符串与字典进行匹配,匹配成功就进行切分。按照匹配的方式可分为:正向最
- Java 结合elasticsearch-ik分词器,实现评论的违规词汇脱敏等操作
八百码
elasticsearch大数据搜索引擎
IK分词(IKAnalyzer)是一款基于Java开发的中文分词工具,它结合了词典分词和基于统计的分词方法,旨在为用户提供高效、准确、灵活的中文分词服务。注意:需要自己建立一个敏感词库,然后自己选择方式同步到elasticsearch中,方便比对操作话不多说,直接上后台代码这个依赖是我使用的,可以结合自己的情况自己选择适用版本的相关依赖org.elasticsearchelasticsearcho
- 文本分析之关键词提取(TF-IDF算法)
SEVEN-YEARS
tf-idf
键词提取是自然语言处理中的一个重要步骤,可以帮助我们理解文本的主要内容。TF-IDF(TermFrequency-InverseDocumentFrequency)是一种常用的关键词提取方法,它基于词频和逆文档频率的概念来确定词语的重要性。准备工作首先,我们需要准备一些工具和库,包括Pandas、jieba(结巴分词)、sklearn等。Pandas:用于数据处理。jieba:用于中文分词。skl
- MySQL 实现模糊匹配
flying jiang
架构设计数据库mysql数据库
摘要:在不依赖Elasticsearch等外部搜索引擎的情况下,您依然能够充分利用MySQL数据库内置的LIKE和REGEXP操作符来实现高效的模糊匹配功能。针对更为复杂的搜索需求,尤其是在处理大型数据集时,结合使用IK分词器(虽然IK分词器本身主要用于中文分词,在Elasticsearch等搜索引擎中广泛应用,但可以通过一些创造性的方法间接应用于MySQL环境)可以显著提升搜索的准确性和效率。正
- Python数据可视化词云展示周董的歌
PathonDiss
马上开始了,你准备好了么准备工作环境:Windows+Python3.6IDE:根据个人喜好,自行选择模块:Matplotlib是一个Python的2D数学绘图库pipinstallmatplotlibimportmatplotlib.pyplotaspltjieba中文分词库pipinstalljiebaimportjiebawordcloud词云库pipinstallwordcloudfrom
- android sqlite 分词,sqlite3自定义分词器
雷幺幺
androidsqlite分词
sqlite3通过使用fts3虚表支持全文搜索,默认支持simple和porter两种分词器,并提供了接口来自定义分词器。这里我们利用mmseg来构造自定义的中文分词器。虽然sqlite在fts3_tokenizer.h中提供了各种接口供用户自定义分词器,但其并未提供c函数供用户来注册自定义的分词器,分词器的注册必须使用sql语句来完成。SELECTfts3_tokenizer(,);其中toke
- 自然语言处理NLP之中文分词和词性标注
陈敬雷-充电了么-CEO兼CTO
自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录一、Python第三方库jieba(中文分词、词性标注)特点二、jieba中文分词的安装关键词抽取基于TF-IDF算法TF-IDF原理介绍基于TextRank算法的关键词抽取textRank算法原理介绍总结一、Python第三方库jieba
- ElasticSearch
HW--
elasticsearch
一、适用场景全文搜索:1.电商搜索2.站内搜索3.文档管理系统4.论坛和社交媒体日志分析与监控:1.服务器日志2.应用日志3.运维监控数据分析:1.业务分析2.时序数据分析NoSQLJSON文档数据库:作为JSON文档数据库使用搜索推荐实现个性化搜索和推荐功能地理信息系统存储和查询带有地理信息的数据大规模监控系统二、为什么要安装分词器?IK分词器中针对中文分词提供了ik_smart和ik_max_
- Lucene实现自定义中文同义词分词器
WangJonney
LuceneLucene
----------------------------------------------------------lucene的分词_中文分词介绍----------------------------------------------------------Paoding:庖丁解牛分词器。已经没有更新了mmseg:使用搜狗的词库1.导入包(有两个包:1.带dic的,2.不带dic的)如果使用
- HanLP实战教程:离线本地版分词与命名实体识别
Tim_Van
中文分词命名实体识别自然语言处理
HanLP是一个功能强大的自然语言处理库,提供了多种语言的分词、命名实体识别等功能。然而,网上关于HanLP的说明往往比较混乱,很多教程都是针对很多年前的API用法。而HanLP官网主要讲述的是RESTful格式的在线请求,但很少提到离线本地版本。本文将介绍如何在离线本地环境中使用HanLP2.1的nativeAPI进行中文分词和命名实体识别。本文使用的HanLP版本为HanLP2.1.0-bet
- es安装中文分词器 IK
我要好好学java
elasticsearch中文分词大数据
1.下载https://github.com/medcl/elasticsearch-analysis-ik这个是官方的下载地址,下载跟自己es版本对应的即可那么需要下载7.12.0版本的分词器2.安装1.在es的plugins的文件夹下先创建一个ik目录bashcd/home/apps/elasticsearch/plugins/mkdirik2.然后将下载解压后的文件放入到ik文件夹下3.重启
- python笔记——jieba库
Toby不写代码
python学习python
文章目录一.概述二.jieba库使用三.实例一.概述1.jieba库概述jieba库是一个重要的第三方中文分词函数库,不是安装包自带的,需要通过pip指令安装pip3installjieba二.jieba库使用1.库函数jieba.cut(s)——精确模式,返回一个可迭代数据类型jieba.cut(s,cut_all=True)——全模式,输出文本s中可能的单词jieba.cut_for_sear
- 什么是jieba?
zg1g
easyui前端javascriptecmascript前端框架
简介jieba是一个流行的中文分词工具,它能够将一段文本切分成有意义的词语。它是目前Python中最常用的中文分词库之一,具有简单易用、高效准确的特点。该库能够处理多种文本分析任务,如情感分析、关键词提取、文本分类等。安装在使用jieba库之前,需要先安装它。可以通过pip命令来进行安装:pip install jieba分词方法jieba库提供了三种分词方法:精确模式、全模式和搜索引擎模式。精确
- 基于jieba库实现中文词频统计
kongxx
要实现中文分词功能,大家基本上都是在使用jieba这个库来实现,下面就看看怎样实现一个简单文本分词功能。安装python的工具,安装当然是使用pip安装了。pipinstalljieba使用先看一个小例子,下面的代码是从一个文本文件中分词并统计出现频率最高的10个单词,并打印到控制台。#!/usr/bin/envpython#-*-coding:utf-8-*-importjiebaimportj
- 如何使用Python进行地址信息(省/市/区/姓名/电话)提取
在数据处理和分析的领域中,地址信息提取是一个常见且关键的任务。Python,作为一门功能强大的编程语言,配合一些专门的库,可以有效地帮助我们从一段文本中提取出详细的地址信息。本文将结合具体的代码示例,详细介绍如何使用Python进行地址信息的提取。准备工作在开始之前,我们需要安装一些必要的Python库:jieba:一个中文分词库,可以用来识别中文文本中的词语。paddle:百度开发的深度学习平台
- NLP学习(二)—中文分词技术
陈易德
NLP自然语言处理
本次代码的环境:运行平台:WindowsPython版本:Python3.xIDE:PyCharm一、前言这篇内容主要是讲解的中文分词,词是一个完整语义的最小单位。分词技术是词性标注、命名实体识别、关键词提取等技术的基础。本篇博文会主要介绍基于规则的分词、基于统计的分词、jieba库等内容。一直在说中文分词,那中文分词和欧语系的分词有什么不同或者说是难点的呢?主要难点在于汉语结构与印欧体系语种差异
- NLP词典切分算法
卡拉比丘流形
自然语言处理自然语言处理python
目录一、词典的加载二、切分算法2.1完全切分2.2正向最长匹配2.3逆向最长匹配2.4双向最长匹配3.速度测评词的定义在语言学上,词语的定义是具备独立意义的最小单位在基于词典的中文分词中,词典中的字符串就是词词的性质一、词典的加载加载HanLP附带的迷你核心词典frompyhanlpimport*defload_dictionary():"""加载HanLP中的mini词库:return:一个se
- Python 词云 【中/英】小白简单入门教程
嗨学编程
1.分析构建词云需要具备:原料即文章等内容将内容进行分词将分词后的内容利用构建词云的工具进行构建保存成图片2.需要的主要模块jieba中文分词wordcloud构建词云3.模块原理wordcloud的实现原理文本预处理词频统计将高频词以图片形式进行彩色渲染jieba的实现原理进行中文分词(有多种模式)4.英文词云英文分词和构建词云只需要wordcloud模块Python学习资料或者需要代码、视频加
- java多线程 封装_【原创】中文分词系统 ICTCLAS2015 的JAVA封装和多线程执行(附代码)...
洪文律所
java多线程封装
本文针对的问题是ICTCLAS2015的多线程分词,为了实现多线程做了简单的JAVA封装。如果有需要可以自行进一步封装其它接口。首先ICTCLAS2015的传送门(http://ictclas.nlpir.org/),其对中文分词做的比较透彻,而且有一定的可调式性。但是应用到实际开发中的话,多线程操作是必须的,因此有了本文的初衷。可能有的小伙伴不太清楚ICTCLASS是干嘛的,下面是一段介绍:NL
- 华为OD机试真题C卷-篇2
laufing
算法与数据结构(python)华为od算法刷题python
文章目录启动多任务排序有效子字符串最长子字符串的长度最长子字符串的长度(二)两个字符串间的最短路径问题生成Huffman树可以处理的最大任务中文分词模拟器手机App防沉迷系统根据IP查找城市文件缓存系统寻找最优的路测线路Wonderland游乐园项目排期/最少交付时间灰度图存储精准核酸检测运输时间启动多任务排序A任务依赖B任务,执行时需要先执行B任务,完成后才可以执行A任务;若一个任务不依赖其他任
- elasticsearch使用ik中文分词器
huan1993
一、背景es自带了一堆的分词器,比如standard、whitespace、language(比如english)等分词器,但是都对中文分词的效果不太好,此处安装第三方分词器ik,来实现分词。二、安装ik分词器1、从github上找到和本次es版本匹配上的分词器#下载地址https://github.com/medcl/elasticsearch-analysis-ik/releases2、使用e
- TF-IDF入门与实例
lawenliu
我们对文档分析的时候,通常需要提取关键词,中文分词可以使用jieba分词,英文通过空格和特殊字符分割即可。那么分割之后是不是出现频率越高这些词就能越好代表这篇文章描述的内容呢?答案是否定的,比如英文中常见的词a、an等,中文中常见的“的”、“你”等等。有一些词可以通过过滤stopWord词表去掉,但是对于领域文档分析就会遇到更复杂的情况,比如需要把100份文档分到不同的领域,提取每个领域的关键词;
- 【2023华为OD-C卷-第三题-中文分词模拟器】100%通过率(JavaScript&Java&Python&C++)
塔子哥学算法
华为odc语言中文分词
本题已有网友报告代码100%通过率OJ&答疑服务购买任意专栏,即可添加博主vx:utheyi,获取答疑/辅导服务OJ权限获取可以在购买专栏后访问网站:首页-CodeFun2000题目描述给定一个连续不包含空格的字符串,该字符串仅包含英文小写字母及英文标点符号(逗号、分号、句号),同时给定词库,对该字符串进行精确分词。说明:精确分词:字符串分词后,不会出现重叠。即"ilovechina",不同词库可
- 自然语言处理从零到入门 分词
BlackStar_L
自然语言处理与文本检索自然语言处理人工智能
自然语言处理从零到入门分词–Tokenization一、什么是分词?二、为什么要分词?三、中英文分词的3个典型区别四、中文分词的3大难点五、3种典型的分词方法六、分词工具总结参考分词是NLP的基础任务,将句子,段落分解为字词单位,方便后续的处理的分析。本文将介绍分词的原因,中英文分词的3个区别,中文分词的3大难点,分词的3种典型方法。最后将介绍中文分词和英文分词常用的工具。一、什么是分词?分词是自
- NLP入门系列—分词 Tokenization
不二人生
自然语言处理自然语言处理人工智能
NLP入门系列—分词Tokenization分词是NLP的基础任务,将句子,段落分解为字词单位,方便后续的处理的分析。本文将介绍分词的原因,中英文分词的3个区别,中文分词的3大难点,分词的3种典型方法。最后将介绍中文分词和英文分词常用的工具。分词就是将句子、段落、文章这种长文本,分解为以字词为单位的数据结构,方便后续的处理分析工作。词是一个比较合适的粒度词是表达完整含义的最小单位。字的粒度太小,无
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文