ICP in VTK

提要

         今天要研究的是关于图像配准的问题,图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。 
       一个经典的应用是场景的重建,比如说一张茶几上摆了很多杯具,用深度摄像机进行场景的扫描,通常不可能通过一次采集就将场景中的物体全部扫描完成,只能是获取场景不同角度的点云,然后将这些点云融合在一起,获得一个完整的场景。
ICP in VTK_第1张图片
        对于点云的配准,给定一个源点云和一个目标点云,配准可以简单地分为三个步骤:
● 找配准对(correspondence pairs);
● 计算配准对之间的变换矩阵;
● 将对应的变换施加到源点云上;
* crrespondences 可以是点,特征等等。

        ICP算法是图像配准极其重要的算法之一。

ICP算法简介

ICP算法最初由Besl和Mckey提出,是一种基于轮廓特征的点配准方法。基准点在CT图像坐标系及世界坐标系下的坐标点集P = {Pi, i = 0,1, 2,…,k}及U = {Ui,i=0,1,2,…,n}。其中,U与P元素间不必存在一一对应关系,元素数目亦不必相同,设k≥n。配准过程就是求取2个坐标系间的旋转和平移变换矩阵,使得来自U与P的同源点间距离最小。其过程如下:
(1)计算最近点,即对于集合U中的每一个点,在集合P中都找出距该点最近的对应点,设集合P中由这些对应点组成的新点集为Q = {qi,i = 0,1,2,…,n}。
(2)采用最小均方根法,计算点集U与Q之间的配准,使得到配准变换矩阵R,T,其中R是3×3的旋转矩阵,T是3×1的平移矩阵。
(3)计算坐标变换,即对于集合U,用配准变换矩阵R,T进行坐标变换,得到新的点集U1,即U1 = RU + T
(4)计算U1与Q之间的均方根误差,如小于预设的极限值ε,则结束,否则,以点集U1替换U,重复上述步骤。

数学描述(感觉更好理解一些)

三维空间中两个3D点,  ,他们的欧式距离表示为:

三维点云匹配问题的目的是找到P和Q变化的矩阵R和T,对于  ,利用最小二乘法求解最优解使:

最小时的R和T。

VTK中有一个类vtkIterativeClosestPointTransform实现了ICP算法,并将ICP算法保存在一个4×4的齐次矩阵中。下面就跟着官方demo来实践一下。


安装库

升级cmake

编译VTK6.1需要cmake2.8.8以上。

下载cmake2.8.12.2

解压终端cd进目录

sudo ./bootstrap

make

sudo make install


编译VTK6.1

官网下载解压终端cd进目录

mkdir  build

cd build

cmake ..

make

sudo make install


实战

ICP的输入是两个点云,这两个点云必须是针对同一个场景,而且必须有重叠部分。

这里关乎格式转换、读取的问题的。,对新手来说,xyz是做好的读取文件了,只含有坐标信息,而且是文本信息。如果不是.xyz格式,用meshlab导出一个ply,把文件头部的说明去掉,扩展名改成xyz就可以了。

代码:

#include <vtkVersion.h>
#include <vtkSmartPointer.h>
#include <vtkTransform.h>
#include <vtkVertexGlyphFilter.h>
#include <vtkPoints.h>
#include <vtkPolyData.h>
#include <vtkCellArray.h>
#include <vtkIterativeClosestPointTransform.h>
#include <vtkTransformPolyDataFilter.h>
#include <vtkLandmarkTransform.h>
#include <vtkMath.h>
#include <vtkMatrix4x4.h>
#include <vtkXMLPolyDataWriter.h>
#include <vtkPolyDataMapper.h>
#include <vtkActor.h>
#include <vtkRenderWindow.h>
#include <vtkRenderer.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkXMLPolyDataReader.h>
#include <vtkProperty.h>
#include <vtkPLYReader.h>
#include <sstream>
#include <iostream>

int main(int argc, char *argv[])
{
	vtkSmartPointer<vtkPolyData> sourceTmp =
            vtkSmartPointer<vtkPolyData>::New();
    vtkSmartPointer<vtkPolyData> targetTmp =
            vtkSmartPointer<vtkPolyData>::New();
            
    vtkSmartPointer<vtkPolyData> source =
            vtkSmartPointer<vtkPolyData>::New();
    vtkSmartPointer<vtkPolyData> target =
            vtkSmartPointer<vtkPolyData>::New();


    
    if(argc == 3)
    {
        // Get all data from the file
        std::string strSource = argv[1];
        std::string strTarget = argv[2];

        std::ifstream fSource(strSource.c_str());
        std::ifstream fTarget(strTarget.c_str());

        std::string line;
        vtkSmartPointer<vtkPoints> sourcePoints =
                vtkSmartPointer<vtkPoints>::New();
        vtkSmartPointer<vtkPoints> targetPoints =
                vtkSmartPointer<vtkPoints>::New();

        while(std::getline(fSource, line))
        {
            double x,y,z;
            std::stringstream linestream;
            linestream << line;
            linestream >> x >> y >> z;
            sourcePoints->InsertNextPoint(x, y, z);
        }
        sourceTmp->SetPoints(sourcePoints);
        vtkSmartPointer<vtkVertexGlyphFilter> vertexFilter1 =
        vtkSmartPointer<vtkVertexGlyphFilter>::New();
#if VTK_MAJOR_VERSION <= 5
        vertexFilter1->SetInputConnection(sourceTmp->GetProducerPort());
#else
    	vertexFilter1->SetInputData(sourceTmp);
#endif
    	vertexFilter1->Update();
    	source->ShallowCopy(vertexFilter1->GetOutput());

        while(std::getline(fTarget, line))
        {
            double x,y,z;
            std::stringstream linestream;
            linestream << line;
            linestream >> x >> y >> z;
            targetPoints->InsertNextPoint(x, y, z);
        }
        targetTmp->SetPoints(targetPoints);
        vtkSmartPointer<vtkVertexGlyphFilter> vertexFilter2 =
        vtkSmartPointer<vtkVertexGlyphFilter>::New();
#if VTK_MAJOR_VERSION <= 5
        vertexFilter2->SetInputConnection(targetTmp->GetProducerPort());
#else
    	vertexFilter2->SetInputData(targetTmp);
#endif
    	vertexFilter2->Update();
    	target->ShallowCopy(vertexFilter2->GetOutput());
    	 
    }
    else
    {
        std::cout << "Error data..." << std::endl;
    }

    // Setup ICP transform
    vtkSmartPointer<vtkIterativeClosestPointTransform> icp =
            vtkSmartPointer<vtkIterativeClosestPointTransform>::New();
    icp->SetSource(source);
    icp->SetTarget(target);
    
    icp->GetLandmarkTransform()->SetModeToRigidBody();

    icp->SetMaximumNumberOfIterations(20);
    //icp->StartByMatchingCentroidsOn();
    icp->Modified();
    icp->Update();
    cout<<"bitch"<<endl;
    // Get the resulting transformation matrix (this matrix takes the source points to the target points)
    vtkSmartPointer<vtkMatrix4x4> m = icp->GetMatrix();
    std::cout << "The resulting matrix is: " << *m << std::endl;

    // Transform the source points by the ICP solution
    vtkSmartPointer<vtkTransformPolyDataFilter> icpTransformFilter =
            vtkSmartPointer<vtkTransformPolyDataFilter>::New();
#if VTK_MAJOR_VERSION <= 5
    icpTransformFilter->SetInput(source);
#else
    icpTransformFilter->SetInputData(source);
#endif
    icpTransformFilter->SetTransform(icp);
    icpTransformFilter->Update();

    /*
  // If you need to take the target points to the source points, the matrix is:
  icp->Inverse();
  vtkSmartPointer<vtkMatrix4x4> minv = icp->GetMatrix();
  std::cout << "The resulting inverse matrix is: " << *minv << std::cout;
  */

    // Visualize
    vtkSmartPointer<vtkPolyDataMapper> sourceMapper =
            vtkSmartPointer<vtkPolyDataMapper>::New();
#if VTK_MAJOR_VERSION <= 5
    sourceMapper->SetInputConnection(source->GetProducerPort());
#else
    sourceMapper->SetInputData(source);
#endif

    vtkSmartPointer<vtkActor> sourceActor =
            vtkSmartPointer<vtkActor>::New();
    sourceActor->SetMapper(sourceMapper);
    sourceActor->GetProperty()->SetColor(1,0,0);
    sourceActor->GetProperty()->SetPointSize(4);

    vtkSmartPointer<vtkPolyDataMapper> targetMapper =
            vtkSmartPointer<vtkPolyDataMapper>::New();
#if VTK_MAJOR_VERSION <= 5
    targetMapper->SetInputConnection(target->GetProducerPort());
#else
    targetMapper->SetInputData(target);
#endif

    vtkSmartPointer<vtkActor> targetActor =
            vtkSmartPointer<vtkActor>::New();
    targetActor->SetMapper(targetMapper);
    targetActor->GetProperty()->SetColor(0,1,0);
    targetActor->GetProperty()->SetPointSize(4);

    vtkSmartPointer<vtkPolyDataMapper> solutionMapper =
            vtkSmartPointer<vtkPolyDataMapper>::New();
    solutionMapper->SetInputConnection(icpTransformFilter->GetOutputPort());

    vtkSmartPointer<vtkActor> solutionActor =
            vtkSmartPointer<vtkActor>::New();
    solutionActor->SetMapper(solutionMapper);
    solutionActor->GetProperty()->SetColor(0,0,1);
    solutionActor->GetProperty()->SetPointSize(3);

    // Create a renderer, render window, and interactor
    vtkSmartPointer<vtkRenderer> renderer =
            vtkSmartPointer<vtkRenderer>::New();
    vtkSmartPointer<vtkRenderWindow> renderWindow =
            vtkSmartPointer<vtkRenderWindow>::New();
    renderWindow->AddRenderer(renderer);
    vtkSmartPointer<vtkRenderWindowInteractor> renderWindowInteractor =
            vtkSmartPointer<vtkRenderWindowInteractor>::New();
    renderWindowInteractor->SetRenderWindow(renderWindow);

    // Add the actor to the scene
    renderer->AddActor(sourceActor);
    renderer->AddActor(targetActor);
    renderer->AddActor(solutionActor);
    renderer->SetBackground(.3, .6, .3); // Background color green

    // Render and interact
    renderWindow->Render();
    renderWindowInteractor->Start();

    return EXIT_SUCCESS;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
 
PROJECT(IterativeClosestPointsTransform)
 
find_package(VTK REQUIRED)
include(${VTK_USE_FILE})
 
add_executable(IterativeClosestPointsTransform MACOSX_BUNDLE IterativeClosestPointsTransform)
 
if(VTK_LIBRARIES)
  target_link_libraries(IterativeClosestPointsTransform ${VTK_LIBRARIES})
else()
  target_link_libraries(IterativeClosestPointsTransform vtkHybrid)
endif()

编译运行一下,用两片点云来测试,得到的结果:

微小的点云平移:

ICP in VTK_第2张图片


稍微大一些的平移

ICP in VTK_第3张图片


加入旋转量

ICP in VTK_第4张图片


绿色是target,红色是source,蓝色是solution。


结论和思考

       和同学一起试用了几种ICP的方法,包括PCL的和VTK的,得到的结果都差不多。并不是很理想,感觉最好的Registration适用情况应该是从不同方位扫描一个物体,然后将点云进行配准,而且点云的算法的初始状态也有要求,一是要有点云的重合,二是不能分开得太远。


难道就这样结束了?

答案是No... 难道传说中的ICP这点配准都搞不定!?那也太弱了吧。

继续看论文和尝试.

这次改用PCL的库来实现。

用blender基于stanford bunny来做一组测试数据

ICP in VTK_第5张图片


ICP in VTK_第6张图片


按照PCL的pipeline,首先采用的是进行一个初始化操作,将点云进行一次预处理,得到一个稍微好一点的结果,这里用到的是SAC-IA的算法,流程如下:

SAC-IA: Sampled Consesus-Initial Alignment
1. Draw n points di from the source cloud
(with a minimum distance d in between).
2. For each drawn di :
2.1 get k closest matches, and
2.2 draw one of the k closest matches as mi
(instead of taking closest match)
3. Estimate transformation (R, t) for these samples
4. Determine inlier pairs with ((Rdi + t) − mi )2 <
5. Repeat N times, and use (R, t) having most inliers


想搞懂算法的自己扒论文,只想知道怎么用的和我来看代码:

template_alignment.cpp

#include <iostream>
#include <limits>
#include <fstream>
#include <vector>
#include <Eigen/Core>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/PolygonMesh.h>
#include <pcl/io/vtk_lib_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/registration/ia_ransac.h>
#include <pcl/PolygonMesh.h>
#include <pcl/visualization/histogram_visualizer.h>
#include <boost/thread/thread.hpp>

class FeatureCloud
{
  public:
    // A bit of shorthand
	typedef pcl::PointCloud<pcl::PointXYZ> PointCloud;
    typedef pcl::PointCloud<pcl::Normal> SurfaceNormals;
    typedef pcl::PointCloud<pcl::FPFHSignature33> LocalFeatures;
    typedef pcl::search::KdTree<pcl::PointXYZ> SearchMethod;

    FeatureCloud () :
      search_method_xyz_ (new SearchMethod),
      normal_radius_ (0.06f),
      feature_radius_ (0.06f)
    {}

    ~FeatureCloud () {}

    // Process the given cloud
    void
    setInputCloud (PointCloud::Ptr xyz)
    {
      xyz_ = xyz;
      processInput ();
    }

    // Load and process the cloud in the given PCD file
    void
    loadInputCloud (const std::string &pcd_file)
    {
      xyz_ = PointCloud::Ptr (new PointCloud);
      pcl::io::loadPCDFile (pcd_file, *xyz_);
      processInput ();
    }

    // Get a pointer to the cloud 3D points
    PointCloud::Ptr
    getPointCloud () const
    {
      return (xyz_);
    }

    // Get a pointer to the cloud of 3D surface normals
    SurfaceNormals::Ptr
    getSurfaceNormals () const
    {
      return (normals_);
    }

    // Get a pointer to the cloud of feature descriptors
    LocalFeatures::Ptr
    getLocalFeatures () const
    {
      return (features_);
    }

  protected:
    // Compute the surface normals and local features
    void
    processInput ()
    {
      computeSurfaceNormals ();
      computeLocalFeatures ();
    }

    // Compute the surface normals
    void
    computeSurfaceNormals ()
    {
      normals_ = SurfaceNormals::Ptr (new SurfaceNormals);

      pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> norm_est;
      norm_est.setInputCloud (xyz_);
      norm_est.setSearchMethod (search_method_xyz_);
      norm_est.setRadiusSearch (normal_radius_);
      norm_est.compute (*normals_);
    }

    // Compute the local feature descriptors
    void
    computeLocalFeatures ()
    {
      features_ = LocalFeatures::Ptr (new LocalFeatures);

      pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh_est;
      fpfh_est.setInputCloud (xyz_);
      fpfh_est.setInputNormals (normals_);
      fpfh_est.setSearchMethod (search_method_xyz_);
      fpfh_est.setRadiusSearch (feature_radius_);
      fpfh_est.compute (*features_);
	 
    }

  private:
    // Point cloud data
    PointCloud::Ptr xyz_;
    SurfaceNormals::Ptr normals_;
    LocalFeatures::Ptr features_;
    SearchMethod::Ptr search_method_xyz_;

    // Parameters
    float normal_radius_;
    float feature_radius_;
};

class TemplateAlignment
{
  public:

    // A struct for storing alignment results
    struct Result
    {
      float fitness_score;
      Eigen::Matrix4f final_transformation;
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    };

    TemplateAlignment () :
      min_sample_distance_ (0.02f),
      max_correspondence_distance_ (0.001f*0.001f),
      nr_iterations_ (1000)
    {
      // Intialize the parameters in the Sample Consensus Intial Alignment (SAC-IA) algorithm
      sac_ia_.setMinSampleDistance (min_sample_distance_);
      sac_ia_.setMaxCorrespondenceDistance (max_correspondence_distance_);
      sac_ia_.setMaximumIterations (nr_iterations_);
    }

    ~TemplateAlignment () {}

    // Set the given cloud as the target to which the templates will be aligned
    void
    setTargetCloud (FeatureCloud &target_cloud)
    {
      target_ = target_cloud;
      sac_ia_.setInputTarget (target_cloud.getPointCloud ());
      sac_ia_.setTargetFeatures (target_cloud.getLocalFeatures ());
    }

    // Add the given cloud to the list of template clouds
    void
    addTemplateCloud (FeatureCloud &template_cloud)
    {
      templates_.push_back (template_cloud);
    }

    // Align the given template cloud to the target specified by setTargetCloud ()
    void
    align (FeatureCloud &template_cloud, TemplateAlignment::Result &result)
    {
      sac_ia_.setInputCloud (template_cloud.getPointCloud ());
      sac_ia_.setSourceFeatures (template_cloud.getLocalFeatures ());
	  

      pcl::PointCloud<pcl::PointXYZ> registration_output;
      sac_ia_.align (registration_output);


      result.fitness_score = (float) sac_ia_.getFitnessScore (max_correspondence_distance_);
      result.final_transformation = sac_ia_.getFinalTransformation ();
    }

    // Align all of template clouds set by addTemplateCloud to the target specified by setTargetCloud ()
    void
    alignAll (std::vector<TemplateAlignment::Result, Eigen::aligned_allocator<Result> > &results)
    {
      results.resize (templates_.size ());
      for (size_t i = 0; i < templates_.size (); ++i)
      {
        align (templates_[i], results[i]);
      }
    }

    // Align all of template clouds to the target cloud to find the one with best alignment score
    int
    findBestAlignment (TemplateAlignment::Result &result)
    {
      // Align all of the templates to the target cloud
      std::vector<Result, Eigen::aligned_allocator<Result> > results;
      alignAll (results);

      // Find the template with the best (lowest) fitness score
      float lowest_score = std::numeric_limits<float>::infinity ();
      int best_template = 0;
      for (size_t i = 0; i < results.size (); ++i)
      {
        const Result &r = results[i];
        if (r.fitness_score < lowest_score)
        {
          lowest_score = r.fitness_score;
          best_template = (int) i;
        }
      }

      // Output the best alignment
      result = results[best_template];
      return (best_template);
    }

  private:
    // A list of template clouds and the target to which they will be aligned
    std::vector<FeatureCloud> templates_;
    FeatureCloud target_;

    // The Sample Consensus Initial Alignment (SAC-IA) registration routine and its parameters
    pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> sac_ia_;
    float min_sample_distance_;
    float max_correspondence_distance_;
    int nr_iterations_;
};

int main()
{
//	pcl::PolygonMesh::Ptr obj_in (new pcl::PolygonMesh);

//    //Read obj file.
//	if(pcl::io::loadPolygonFileOBJ("tree/tarotemplate.obj",*obj_in)==-1)
//	{
//		PCL_ERROR("Couldn't read file template.obj");
//		return -1;
//	}

//	std::cout<<"Loaded "
//		     <<obj_in->cloud.width * obj_in->cloud.height
//			 << " data points: "
//             << std::endl;

    //Transform obj to source PCD.
    pcl::PointCloud<pcl::PointXYZ>::Ptr tree_template(new pcl::PointCloud<pcl::PointXYZ>);
    //pcl::fromROSMsg(obj_in->cloud, *tree_template);
    pcl::io::loadPCDFile("source.pcd",*tree_template);

	FeatureCloud object_template;
    object_template.setInputCloud(tree_template);

    //Load taget point cloud.
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::io::loadPCDFile("target.pcd",*cloud);

	FeatureCloud target_cloud;
    target_cloud.setInputCloud(cloud);

	TemplateAlignment template_align;
	template_align.addTemplateCloud(object_template);
	template_align.setTargetCloud(target_cloud);

  TemplateAlignment::Result best_alignment;

  template_align.align(object_template, best_alignment);

  // Print the alignment fitness score (values less than 0.00002 are good)
  printf ("fitness score: %f\n", best_alignment.fitness_score);

  // Print the rotation matrix and translation vector
  Eigen::Matrix3f rotation = best_alignment.final_transformation.block<3,3>(0, 0);
  Eigen::Vector3f translation = best_alignment.final_transformation.block<3,1>(0, 3);

  printf ("\n");
  printf ("    | %6.3f %6.3f %6.3f | \n", rotation (0,0), rotation (0,1), rotation (0,2));
  printf ("R = | %6.3f %6.3f %6.3f | \n", rotation (1,0), rotation (1,1), rotation (1,2));
  printf ("    | %6.3f %6.3f %6.3f | \n", rotation (2,0), rotation (2,1), rotation (2,2));
  printf ("\n");
  printf ("t = < %0.3f, %0.3f, %0.3f >\n", translation (0), translation (1), translation (2));
  
   // Save the aligned template for visualization
  pcl::PointCloud<pcl::PointXYZ> transformed_cloud;
  pcl::transformPointCloud (*object_template.getPointCloud (), transformed_cloud, best_alignment.final_transformation);
  pcl::io::savePCDFileBinary ("output.pcd", transformed_cloud);



  	pcl::visualization::PCLHistogramVisualizer hViewer;
	hViewer.addFeatureHistogram(*target_cloud.getLocalFeatures(),"fpfh",0);
	hViewer.addFeatureHistogram(*object_template.getLocalFeatures(),"fpfh",0,"cloud1");
	
	while(1)
	{
		hViewer.spinOnce(100);
		boost::this_thread::sleep(boost::posix_time::microseconds(100000));
	}
	return 0;
}



CMakeList.txt

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

project(template_alignment)

find_package(PCL 1.2 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

add_executable (template_alignment template_alignment.cpp)
target_link_libraries (template_alignment ${PCL_LIBRARIES})

编译运行,得到结果:

ICP in VTK_第7张图片




参考

【3D】迭代最近点算法 Iterative Closest Points

ICP算法(Iterative Closest Point)及VTK实现

ICCV2011-registration 下载

ICCV2011-initial_registration 下载


你可能感兴趣的:(VTK)