Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).
For example:
Given binary tree {3,9,20,#,#,15,7}
,
3 / \ 9 20 / \ 15 7
return its zigzag level order traversal as:
[ [3], [20,9], [15,7] ]
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
/********************************* * 日期:2014-12-09 * 作者:SJF0115 * 题号: 103.Binary Tree Zigzag Level Order Traversal * 来源:https://oj.leetcode.com/problems/binary-tree-zigzag-level-order-traversal/ * 结果:AC * 来源:LeetCode * 总结: **********************************/ #include <iostream> #include <malloc.h> #include <stack> #include <vector> #include <queue> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: vector<vector<int> > zigzagLevelOrder(TreeNode *root) { vector<int> level; vector<vector<int> > levels; if(root == NULL){ return levels; } queue<TreeNode*> curq,nextq; stack<TreeNode*> curs,nexts; // 第index层 int index = 1; //入队列 curq.push(root); // 层次遍历 while(!curq.empty() || !curs.empty()){ //当前层遍历 while(!curq.empty() || !curs.empty()){ TreeNode *p,*q; // 第奇数层用队列存储 if(index & 1){ p = curq.front(); curq.pop(); // 第偶数层用栈存储下一层节点 //左子树 if(p->left){ nexts.push(p->left); // 用于从左到右遍历节点 nextq.push(p->left); } //右子树 if(p->right){ nexts.push(p->right); //用于从左到右遍历 nextq.push(p->right); } } // 第偶数层用栈存储 else{ p = curs.top(); curs.pop(); // 存储节点时都是从左到右遍历 q = curq.front(); curq.pop(); // 第奇数层用队列存储下一层节点 //左子树 if(q->left){ nextq.push(q->left); } //右子树 if(q->right){ nextq.push(q->right); } } level.push_back(p->val); } index++; levels.push_back(level); level.clear(); swap(nextq,curq); swap(nexts,curs); }//while return levels; } }; //按先序序列创建二叉树 int CreateBTree(TreeNode* &T){ char data; //按先序次序输入二叉树中结点的值(一个字符),‘#’表示空树 cin>>data; if(data == '#'){ T = NULL; } else{ T = (TreeNode*)malloc(sizeof(TreeNode)); //生成根结点 T->val = data-'0'; //构造左子树 CreateBTree(T->left); //构造右子树 CreateBTree(T->right); } return 0; } int main() { Solution solution; TreeNode* root(0); CreateBTree(root); vector<vector<int> > vecs = solution.zigzagLevelOrder(root); for(int i = 0;i < vecs.size();i++){ for(int j = 0;j < vecs[i].size();j++){ cout<<vecs[i][j]; } cout<<endl; } }
//广度优先遍历,用一个 bool 记录是从左到右还是从右到左,每一层结束就翻转一下。 // 迭代版,时间复杂度 O(n),空间复杂度 O(n) class Solution { public: vector<vector<int> > zigzagLevelOrder(TreeNode *root) { vector<int> level; vector<vector<int> > levels; if(root == NULL){ return levels; } queue<TreeNode*> queue; // 从左到右 bool isLR = true; //入队列 queue.push(root); // 层次分割标志 queue.push(NULL); // 层次遍历 while(!queue.empty()){ TreeNode* p = queue.front(); queue.pop(); // 访问当前层 if(p){ level.push_back(p->val); // 左子节点 if(p->left){ queue.push(p->left); } // 右子节点 if(p->right){ queue.push(p->right); } } // 当前层访问完毕 else{ // 从左到右 if(isLR){ levels.push_back(level); } else{ // 反转 reverse(level.begin(), level.end()); levels.push_back(level); } level.clear(); isLR = !isLR; // 判断是当前层访问完毕还是全部访问完毕 if(queue.size() > 0){ queue.push(NULL); } } }//while return levels; } };