《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现

前言:

       这里我要介绍的这4个数据结构,是在《数据结构与算法分析》一书上的最后4种数据结构了。这些数据结构给出来了实现的代码,实现的难度并不大,一天之内我就把这四个数据结构的测试代码给调通了。

       这四个数据结构里,一个是红黑树的变种,对红黑树进行了化简,一个是为了多维查询范围所设计的数据结构。最后一个是变种的斐波那契堆,目的同样是为了化简实现。本来我想这几个数据结构就没必要再写了吧,后来想想。整个《数据结构与算法分析》这本书我都实现并写了博客,最后还是要做到有始有终吧。因为这几种数据结构的实现,对于我已经不再困难,主要是理解思想。因此在这里的介绍,主要还是介绍思想与展示一下调试的结果。

我的github:

我实现的代码全部贴在我的github中,欢迎大家去参观。

https://github.com/YinWenAtBIT

介绍:

AA树:

一、发明:

AA树是Arne Andersson教授在他的论文"Balancedsearch trees made simple"中介绍的一个红黑树变种,设计的目的是减少RB树考虑的cases

二、特性:

1AA-TreeRB-Tree的一种变型,是红黑树

2结点只能作为结点的右孩子结点均可

3、结点中的level相当于RBT中的结点的黑高度

4结点的level与其结点的level相同;

5结点的level比其结点的level1

6孩子的level结点1孩子的level结点01

《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第1张图片

上图与《数据结构与算法分析》一书中给出的图相同,其中,10,40,60,70为红色的右孩子。

三、插入操作:

插入操作与删除操作,都有可能破坏AA树的4,5性质,因此,在每次完成了插入操作或者删除操作之后,需要进行树的性质修复。之所有说AA树是化简 的红黑树,就是因为此时的修复工作简单了很多。

在上图中插入45或者2,将会破坏AA树的性质,需要使用插入修复。

《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第2张图片

插入修复:

情况1:

如上插入节点2,在左孩子插入之后,导致左孩子的level上升,破坏性质5(左孩子只能是黑色),解决的方式是通过一次右旋转。在这里我们命名为Skew操作,对右旋转做了一个封装,判断是否左孩子的level与父亲的level是否相等

《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第3张图片

AATree skew(AATree T)
{
	if(T->level == T->left->level)
		T = rightSingleRotate(T);
	return T;
}
情况2:

如上插入节点45,在右孩子插入之后,导致两个红色的孩子连在一起了(这里实际上是两个水平链接,实际实现时不再使用颜色标记,只记录level),破坏性质5(左孩子只能是黑色),解决的方式是通过一次左旋转。在这里我们命名为Split操作,对左旋转做了一个封装,判断是否右孩子的右孩子的level与父亲的level是否相等。
《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第4张图片

插入编码:

AATree insert(ElementType item, AATree T)
{
	if(T == NullNode)
	{
		T = (AATree)malloc(sizeof(struct AANode));
		if(T == NULL)
			exit(1);

		T->Element = item;
		T->level  = 1;
		T->left = T->right = NullNode;

		return T;
	}
	else if(item < T->Element)
		T->left = insert(item, T->left);
	else if(item> T->Element)
		T->right = insert(item, T->right);

	T = skew(T);
	T = split(T);
	return T;
}


四、删除操作

删除操作的实现与普通的查找二叉树相同,不过由于AA树的特性,一个节点如果不是叶子节点,那么它必定有一个右孩子。我们就可以总是用右孩子中的最大节点来代替该节点,然后删除掉右孩子中的最大节点。实现的时候,我们使用两个静态变量来跟踪该删除的节点和右孩子最大的节点。完成删除之后,我们有可能破坏了树的level。

如果删除的是一个左孩子,或者右孩子,都有可能导致父亲节点比左右孩子的level高出2。那么此时就要降低父亲节点的level。并且如果导致了右孩子的level比父亲level高,右孩子的level要等于父亲的level。

经过这样的处理之后,同一个level上,最多会出现6个节点,如下图所示(删除1后,父亲节点2高出做孩子两个level,下降为1,节点5高于父亲节点,下降为1,所有节点于是都处于level 1)

《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第5张图片

解决的方案就是连续的Skew操作加上Split操作,在这里就不进行分析了。

删除编码:

AATree remove(ElementType item, AATree T)
{
	static Position DeletePtr, LastPtr;
	if(T != NullNode)
	{
		LastPtr = T;
		if(item < T->Element)
			T->left = remove(item, T->left);
		else
		{
			DeletePtr = T;
			T->right = remove(item, T->right);
		}

		if(T == LastPtr)
		{
			if(DeletePtr != NullNode && item == DeletePtr ->Element)
			{
				DeletePtr->Element = T->Element;
				DeletePtr = NullNode;
				T = T->right;
				free(LastPtr);
			}
		}

		else
		{
			if(T->left->level < T->level -1 || T->right ->level < T->level -1)
			{
				if(T->right->level > -- T->level)
					T->right->level = T->level;

				T= skew(T);
				T->right = skew(T->right);
				T->right->right = skew(T->right->right);
				T = split(T);
				T->right = split(T->right);
			}
		}
	}

	return T;
}
测试结果图:

《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第6张图片        《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第7张图片

左图是按照该书中顺序插入节点之后的图,右图是删除根节点70之后的图。

Treap树:

一、特性:

Treap树基本上是最简单的二叉查找树了。它在树中添加了一个新的元素,优先级,就好比优先队列,优先级越小,越靠近树根。因此,该树只需要满足如下性质:

1.如果vu的左孩子,则key[v] < key[u].

2.如果vu的右孩子,则key[v] > key[u].

3.如果vu的孩子,则priority[u] > priority[u].

这两个性质的结合就是为什么这种树被称为“treap”的原因,因为它同时具有二叉查找树和堆的特征

二、插入与删除

实现插入与删除特别简单,实用递归方法,每次插入之后进行判断,如果违反了堆的性质,进行旋转即可。

删除的方式是通过把要删除的点旋转到叶子节点,最后旋转为了NullNode的左节点,然后删除。中途的旋转会保证一直满足堆的性质。

三、编码实现:

插入:

TreapTree insert(ElementType item, TreapTree T)
{
	if(T == NullNode)
	{
		T = (TreapTree)malloc(sizeof(struct TreapNode));
		if(T == NULL)
			exit(1);

		T->Element = item;
		T->Priority  = rand()%Infinity;
		T->left = T->right = NullNode;

		return T;
	}
	else if(item < T->Element)
	{
		T->left = insert(item, T->left);
		if(T->Priority > T->left->Priority)
			T = rightSingleRotate(T);
	}
	else if(item> T->Element)
	{
		T->right = insert(item, T->right);
		if(T->Priority > T->right->Priority)
			T = leftSingleRotate(T);
	}

	return T;
}
删除:

TreapTree remove(ElementType item, TreapTree T)
{
	static Position DeletePtr, LastPtr;
	if(T != NullNode)
	{
		if(item < T->Element)
			T->left = remove(item, T->left);
		else if(item > T->Element)
		{
			T->right = remove(item, T->right);
		}
		else
		{
			if(T->left->Priority < T->right->Priority)
				T = rightSingleRotate(T);
			else 
				T = leftSingleRotate(T);

			if(T != NullNode)
				T = remove(item, T);

			else
			{
				free(T->left);
				T->left = NullNode;
			}
		}
	}

	return T;

}
测试:

《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第8张图片《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现_第9张图片

左图是插入后形成的Treap树,表示为节点值与优先值。右图是删除节点70之后的树。

总结:

到这里,整个《数据结构与算法分析》上的数据结构与算法,就算是全部都学习完了,学习的收获非常大,我会写一篇新的感想博客来好好说说

你可能感兴趣的:(《数据结构与算法分析》第十二章,AA-树,Treap树简要介绍与实现)