[置顶] 算法系列1《DES》

     

1. DES算法简介


     DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

 

     DES 使用一个56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用16 个循环,使用异或置换代换移位操作四种基本运算。

 

    DES 的常见变体是三重 DES,使用168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容DES。

 

    攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用56 位的密钥,则可能的密钥数量是 2 的 56次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(AdvancedEncryption Standard,AES).

 

   该算法被允许用于安全报文传送MAC机制密文运算,算法的详细过程在ISO8731-1、ISO8732、ISO/IEC10116中定义。


[置顶] 算法系列1《DES》_第1张图片





2. DES实现源码


<<DES.h>>

namespace Des
{
	enum
	{
		ECB = 0,
		CBC = 1
	};
	enum
	{
		ENCRYPT = 0,
		DECRYPT = 1
	};

	typedef BYTE (*PSUBKEY)[16][48];

	void ByteToBit(const BYTE* pIn, BYTE byBits, BYTE* pOut);
	void BitToByte(const BYTE* pIn, BYTE byBits, BYTE* pOut);
	void LeftShift(BYTE* pIn, BYTE byInLen, BYTE byOffset);
    void Xor(const BYTE* pIn, BYTE byLen, BYTE* pInOut);
	void Transform(const BYTE* pIn, const bool* pTable, BYTE len, bool* pOut);
	void S_func(const BYTE in[48], BYTE out[32]);
	void F_func(const BYTE ki[48], BYTE out[32]);

	void SetSubKey(PSUBKEY pSubKey, const BYTE Key[8]);
	void DoDes(int nMode, int nOperator, const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output, const BYTE* init_Vector= NULL);
	BOOL DoDes(int nMode, int nOperator, string strText, string KEK, string &OutData,const BYTE* init_Vector = NULL);
	void DoDesMac(string intText, string KEK, string &OutData, const BYTE* init_Vector = NULL);
	void DoSSMac(string intText, string KEK, string &OutData,int _Length);
	void DoGPMac(string intText, string KEK, string &OutData);
	void RunDes(const BYTE In[8], int nType, BYTE* Key, BYTE Out[8]);
	void DoDesMac(const BYTE* input, int nDataLen, const BYTE* key, int nKeyLen, BYTE* output, const BYTE* init_Vector = NULL);
	void DoSSMac(const BYTE* input, int nDataLen, const BYTE* key, int nKeyLen, BYTE* output);
	void DoGPMac(const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output);
	string DesVerify(string Stxt);
}
 

<<DES.CPP>>

namespace Des
{
	// initial permutation IP
	const BYTE IP_Table[64] = {
		58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
			62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
			57, 49, 41, 33, 25, 17,  9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
			61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
	};

	// final permutation IP^-1 
	const BYTE IPR_Table[64] = {
		40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
			38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
			36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
			34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41,  9, 49, 17, 57, 25
	};

	// expansion operation matrix
	const BYTE E_Table[48] = {
		32, 1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,
			8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
			16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
			24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1
	};

	// 32-bit permutation function P used on the output of the S-boxes 
	const BYTE P_Table[32] = {
		16, 7, 20, 21, 29, 12, 28, 17, 1,  15, 23, 26, 5,  18, 31, 10,
			2,  8, 24, 14, 32, 27, 3,  9,  19, 13, 30, 6,  22, 11, 4,  25
	};

	// permuted choice table (key) 
	const BYTE PC1_Table[56] = {
		57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
			10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
			63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
			14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
	};

	// permuted choice key (table) 
	const BYTE PC2_Table[48] = {
		14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
			23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
			41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
			44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
	};

	// number left rotations of pc1 
	const BYTE LR_Table[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};

	// The (in)famous S-boxes 
	const BYTE S_Box[8][4][16] = {
		// S1 
		14,	4,	13,	 1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
			0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
			4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
			15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
			// S2 
			15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
			3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
			0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
			13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
			// S3 
			10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
			13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
			13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
			1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
			// S4 
			7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
			13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
			10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
			3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
			// S5 
			2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
			14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
			4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
			11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
			// S6 
			12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
			10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
			9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
			4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
			// S7 
			4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
			13, 0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
			1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
			6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
			// S8 
			13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12, 7,
			1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
			7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
			2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
	};

	void ByteToBit(const BYTE* pIn, BYTE byBits, BYTE* pOut)
	{
		for (int i = 0; i < byBits;  ++ i)
		{
			pOut[i] = (pIn[i >> 3] >> (7 - i & 7)) & 1;
		}
	}

	void BitToByte(const BYTE* pIn, BYTE byBits, BYTE* pOut)
	{
		memset(pOut, 0, byBits >> 3);
		for (int i = 0; i < byBits;  ++ i)
		{
			pOut[i >> 3] |= (pIn[i] << (7 - i & 7));
		}
	}

	void LeftShift(BYTE* pIn, BYTE byInLen, BYTE byOffset)
	{
		BYTE temp[256];
		memcpy(temp, pIn, byOffset);
		memcpy(pIn, pIn  +  byOffset, byInLen - byOffset);
		memcpy(pIn  +  byInLen - byOffset, temp, byOffset);
	}
	
	void Xor(const BYTE* pIn1, const BYTE* pIn2, BYTE byLen, BYTE* pInOut)
	{
		for (int i = 0; i < byLen;  ++ i)
		{
			pInOut[i] = pIn1[i] ^ pIn2[i];
		}
	}

	void Transform(const BYTE* pIn, const BYTE* pTable, BYTE len, BYTE* pOut)
	{
		BYTE temp[64];

		for (int i = 0; i < len;  ++ i)
		{
			temp[i] = pIn[pTable[i] - 1];
		}
		memcpy(pOut, temp, len);
	}

	void S_func(const BYTE in[48], BYTE out[32]) //4BIT 代替 6BIT
	{
		for (BYTE i = 0, j, k; i < 8;  ++ i, in  += 6, out  += 4) 
		{
			j = (in[0] << 1)  +  in[5];
			k = (in[1] << 3)  +  (in[2] << 2)  +  (in[3] << 1)  +  in[4];	//组织SID下标

			for (BYTE l = 0; l < 4;  ++ l)  //把相应4bit赋值
			{
				out[l] = (S_Box[i][j][k] >> (3 - l)) & 1;
			}
		}
	}

	void F_func(const BYTE ki[48], BYTE out[32])
	{
		BYTE MR[48];
		Transform(out, E_Table, 48, MR);  //扩展置换E
		Xor(ki, MR, 48, MR);
		S_func(MR, out);
		Transform(out, P_Table, 32, out);
	}

	void SetSubKey(PSUBKEY pSubKey, const BYTE Key[8])
	{
		BYTE K[64]; 
		BYTE* KL = &K[0];
		BYTE* KR = &K[28];
		ByteToBit(Key, 64, K);
		Transform(K, PC1_Table, 56, K);
		for (int i = 0; i < 16;  ++ i) 
		{
			LeftShift(KL, 28, LR_Table[i]);
			LeftShift(KR, 28, LR_Table[i]);
			Transform(K, PC2_Table, 48, (*pSubKey)[i]);
		}
	}

	void RunDes(const BYTE* In, int nOperator, const PSUBKEY pSubKey, BYTE* Out)
	{
		BYTE M[64];
		BYTE temp[32];
		BYTE* li = &M[0];
		BYTE* ri = &M[32];
		ByteToBit(In, 64, M);
		Transform(M, IP_Table, 64, M); //
		if (ENCRYPT == nOperator)
		{
			for (int i = 0; i < 16;  ++ i)
			{
				memcpy(temp, ri, 32);		//Ri[i-1] 保存
				F_func((*pSubKey)[i], ri);	//Ri[i-1]经过转化和SBox输出为P盒
				Xor(li, ri, 32, ri);		//Ri[i] = P XOR Li[i-1]
				memcpy(li, temp, 32);		//Li[i] = Ri[i-1] 
			}
		}
		else
		{
			for (int i = 15; i >= 0; --i) 
			{
				memcpy(temp, ri, 32);		//Ri[i-1] 保存
				F_func((*pSubKey)[i], ri);	//Ri[i-1]经过转化和SBox输出为P
				Xor(li, ri, 32, ri);		//Ri[i] = P XOR Li[i-1]
				memcpy(li, temp, 32);		//Li[i] = Ri[i-1]
			}
		}
		LeftShift(M, 64, 32);			    //Ri与Li换位重组M 
		Transform(M, IPR_Table, 64, M);		//最后结果进行转化
		BitToByte(M, 64, Out);				//组织成字符
	}

	void DoDes(int nMode, int nOperator, const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output, const BYTE* init_Vector)
	{
		BYTE bySubKey[3][16][48];		//秘钥
		memset(bySubKey, 0x01, sizeof(bySubKey));

		//构造并生成SubKeys
		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
		for (int i = 0; i < nKey; i++)
		{
			SetSubKey(&bySubKey[i], &key[i << 3]);
		}

		int j = nInLen >> 3;
		if (nMode == ECB)	//ECB模式
		{
			if (1 == nKey)	//单Key
			{
				for (int i = 0; i < j; ++i, output += 8, input += 8)
				{
					RunDes(input, nOperator, &bySubKey[0], output);
				}
			}
			else if (2 == nKey)	//3DES 2Key
			{
				for (int i = 0; i < j; ++i, output += 8, input += 8)
				{
					RunDes(input, nOperator, &bySubKey[0], output);
					RunDes(output, !nOperator, &bySubKey[1], output);
					RunDes(output, nOperator, &bySubKey[0], output);
				}
			}
			else			//3DES 3Key
			{
				for (int i = 0; i < j; ++i, output += 8, input += 8)
				{
					RunDes(input, nOperator, &bySubKey[nOperator ? 2 : 0], output);
					RunDes(output, !nOperator, &bySubKey[1], output);
					RunDes(output, nOperator, &bySubKey[nOperator ? 0 : 2], output);
				}
			}
		}
		else  //CBC模式  如果init_Vector为NULL则设置初始向量为8字节的0
		{
			BYTE byVector[8];	 //扭转向量
			BYTE byTemp[8];      //中间变量

			memset(byVector, 0x00, sizeof(byVector));
			memset(byTemp,   0x00, sizeof(byTemp));

			if (init_Vector)
			{
				memcpy(byVector, init_Vector, 8);
			}

			if (nKey == 1)	//单Key
			{
				for (int i = 0; i < j; ++i, output += 8, input += 8)
				{
					if (ENCRYPT == nOperator)
					{
						Xor(input, byVector, 8, byTemp);         //将输入与扭转变量异或
					}
					else
					{
						memcpy(byTemp, input, 8);
					}

					RunDes(byTemp, nOperator, &bySubKey[0], output);

					if (ENCRYPT == nOperator)
					{
						memcpy(byVector, output, 8);			//将输出设定为扭转变量
					}
					else
					{
						Xor(output, byVector, 8, output);       //将输出与扭转变量异或

						memcpy(byVector, byTemp, 8);			//将输入设定为扭转变量
					}
				}
			}
			else if (nKey == 2)	//3DES CBC 2Key
			{
				for (int i = 0; i < j; ++i, output += 8, input += 8)
				{
					if (ENCRYPT == nOperator)
					{
						for (int j = 0; j < 8; ++j)		//将输入与扭转变量异或
						{
							byTemp[j] = input[j] ^ byVector[j];
						}
					}
					else
					{
						memcpy(byTemp, input, 8);
					}

					RunDes(byTemp, nOperator, &bySubKey[0], output);
					RunDes(output, !nOperator, &bySubKey[1], output);
					RunDes(output, nOperator, &bySubKey[0], output);

					if (ENCRYPT == nOperator)
					{
						memcpy(byVector, output, 8);			//将输出设定为扭转变量
					}
					else
					{
						for (int j = 0; j < 8; ++j)		//将输出与扭转变量异或
						{
							output[j] = output[j] ^ byVector[j];
						}
						memcpy(byVector, byTemp, 8);			//将输入设定为扭转变量
					}
				}
			}
			else			//3DES CBC 3Key
			{
				for (int i = 0; i < j; ++i, output += 8, input += 8)
				{
					if (ENCRYPT == nOperator)
					{
						for (int j = 0; j < 8; ++j)		//将输入与扭转变量异或
						{
							byTemp[j] =	input[j] ^ byVector[j];
						}
					}
					else
					{
						memcpy(byTemp, input, 8);
					}

					RunDes(byTemp, nOperator, &bySubKey[nOperator ? 2 : 0], output);
					RunDes(output, !nOperator, &bySubKey[1], output);
					RunDes(output, nOperator, &bySubKey[nOperator ? 0 : 2], output);

					if (ENCRYPT == nOperator)
					{
						memcpy(byVector, output, 8);			//将输出设定为扭转变量
					}
					else
					{
						for (int j = 0; j < 8; ++j)		        //将输出与扭转变量异或
						{
							output[j] = output[j] ^ byVector[j];
						}
						memcpy(byVector, byTemp, 8);			//将输入设定为扭转变量
					}
				}
			}
		}
	}

	BOOL DoDes(int nMode, int nOperator, string strText, string KEK, string &OutData,const BYTE* init_Vector)
	{	
		BYTE key[33]= {0};
		BYTE input[512] = {0};
		BYTE output[512] = {0};
		int nInLen = strText.length()/2;
		BYTE nKeyLen=(BYTE)KEK.length()/2;
		strings::HexToAsc(strText, input);
		strings::HexToAsc(KEK, key);
		if(nInLen%8!=0 || nKeyLen%8!=0 || nInLen==0 || nKeyLen==0){
			return false;
		}

		DoDes(nMode, nOperator, input, nInLen, key, nKeyLen, output, init_Vector);
		strings::AscToHex(output, nInLen, OutData);
		return true;
	}

	//ANSI X9.9 MAC    DES CBC
	void DoDesMac(string intText, string KEK, string &OutData, const BYTE* init_Vector)
	{
		BYTE byVector[8];
		BYTE byTemp[8];
		BYTE byData[128];

		BYTE Input[512]={0};
		BYTE Key[512]={0};
		int nInLen;
		BYTE nKeyLen;
		BYTE Output[512]={0};

		BYTE *input=Input;
		BYTE *key=Key;
		BYTE *output=Output;

		nInLen=(BYTE)intText.length()/2;
		nKeyLen=(BYTE)KEK.length()/2;

		strings::HexToAsc(intText, input);
		strings::HexToAsc(KEK, key);

		memset(byVector, 0x00, sizeof(byVector));
		memset(byTemp,   0x00, sizeof(byTemp));
		memset(byData,   0x00, sizeof(byData));

		BYTE bySubKey[3][16][48];		//秘钥

		memset(bySubKey, 0x01, sizeof(bySubKey));

		//构造并生成SubKeys
		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
		for (int i = 0; i < nKey; i ++ )
		{
			SetSubKey(&bySubKey[i], &key[i << 3]);
		}

		int j = nInLen >> 3;

		if (init_Vector != NULL)
		{
			memcpy(byVector, init_Vector, 8);
		}

		if (1 == nKey)	//单倍长Key(8字节)
		{
			for (int i = 0; i < j;  ++ i, input  += 8)
			{
				Xor(input, byVector, 8, byTemp);
				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);

				memcpy(byVector, output, 8);			//将输出设定为扭转变量
			}
		}
		else if (2 == nKey)	//双倍长Key(16字节)
		{
			for (int i = 0; i < j;  ++ i, input  += 8)
			{
				Xor(input, byVector, 8, byTemp);
				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
				RunDes(output, DECRYPT, &bySubKey[1], output);
				RunDes(output, ENCRYPT, &bySubKey[0], output);

				memcpy(byVector, output, 8);			//将输出设定为扭转变量
			}
		}
		else  //三倍长Key(24字节)    尚未验证
		{
			for (int i = 0; i < j;  ++ i, input  += 8)
			{
				Xor(input, byVector, 8, byTemp);
				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
				RunDes(output, DECRYPT, &bySubKey[1], output);
				RunDes(output, ENCRYPT, &bySubKey[2], output);

				memcpy(byVector, output, 8);			//将输出设定为扭转变量
			}
		}

		strings::AscToHex(Output, 8, OutData);
	}

	//该函数的计算结果与卫士通dll计算MAC的结果一样
	//input中要有80 + 00.... input的前8字节作为初始向量
	void DoSSMac(string intText, string KEK, string &OutData,int _Length)
	{ 
 		int nInLen=(int)intText.length()/2;
 		int nKeyLen=(int)KEK.length()/2;
		unsigned char *input = new unsigned char[nInLen];
		unsigned char *key = new unsigned char[nKeyLen];

		strings::HexToAsc((const unsigned char*)intText.c_str(), nInLen*2, input);
		strings::HexToAsc((const unsigned char*)KEK.c_str(), nKeyLen*2, key);

		BYTE byInitVec[8];   //初始向量
	    BYTE byTemp[8];
		BYTE output[8];
		memset(byInitVec, 0x00, sizeof(byInitVec));
		memset(byTemp,   0x00, sizeof(byTemp));
		memset(output,   0x00, sizeof(output));

		memcpy(byInitVec, input, 8);
		BYTE bySubKey[3][16][48];		//秘钥
		memset(bySubKey, 0x01, sizeof(bySubKey));

		int i = 0;
		int j = (nInLen >> 3);

		//构造并生成SubKeys
		BYTE nKey = (BYTE)((nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3));
		for (i = 0; i < nKey; i ++ )
		{
			SetSubKey(&bySubKey[i], &key[i << 3]);
		}

		memcpy(output, input, 8);
		if (1 == nKey)	//单倍长Key(8字节)
		{
			j--;
			for (int i = 0; i < j;  ++ i)
			{
				Xor(input  +  8 * (i  +  1), output, 8, output);
				RunDes(output, 0, &bySubKey[0], output);

				//memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
			}
		}
		else if (2 == nKey)	//双倍长Key(16字节)
		{      
			j -= 2;
			for (i = 0; i < j;  ++ i)
			{
				Xor(input  +  8 * (i  +  1), output, 8, output);
				RunDes(output, 0, &bySubKey[0], output);       //将输出设定为扭转变量	
			}
			Xor(input  +  8 * ( ++ i), output, 8, output);        //最后一块数据和上面加密结果异或
			RunDes(output, 0, &bySubKey[0], output);
			RunDes(output, 1, &bySubKey[1], output);
			RunDes(output, 0, &bySubKey[0], output);
		}
		else  //三倍长Key(24字节)    尚未验证
		{
			//j -= 2;
			for (i = 0, j = (nInLen >> 3) - 2; i < j;  ++ i, input  += 8)
			{
				Xor(input  +  8 * (i  +  1), output, 8, byTemp);
				RunDes(byTemp, 0, &bySubKey[0], output);

				memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
			}
			Xor(input  +  8 * i, output, 8, output);
			RunDes(output, 2, &bySubKey[0], output);
			RunDes(output, 1, &bySubKey[1], output);
			RunDes(output, 0, &bySubKey[0], output);
		}
		strings::AscToHex(output, _Length , OutData);
	}

	//input中不要自己填补80 + 00....       初始向量固定为8字节的0
	void DoGPMac(string intText, string KEK, string &OutData)
	{
		BYTE byInData[256];  //密钥,输入数据
		BYTE byEnter[256];
		BYTE byResult[256];  //算法模式,算法操作,输入,结果
		int nInLen;
		int nKeyLen;
		BYTE Output[512]={0};
		BYTE Input[512]={0};
		BYTE Key[512]={0};
		BYTE *input=Input;
		BYTE *key=Key;
		BYTE *output=Output;

		nInLen=intText.length()/2;
		nKeyLen=KEK.length()/2;

		strings::HexToAsc(intText, input);
		strings::HexToAsc(KEK, key);

		memset(byInData, 0x00, sizeof(byInData));
		memcpy(byInData, input, nInLen);
		byInData[nInLen] = 0x80;
		nInLen ++ ;
		nInLen  += (8 - nInLen % 8);  //80  +  (nInLen % 8)个00

		int j = 0;
		memset(byResult, 0x00, sizeof(byResult));
		for (int i = 0; i < nInLen / 8; i ++ )
		{
			memset(byEnter, 0x00, sizeof(byEnter));
			for (j = 0; j < 8; j ++ )
			{
				byEnter[j  +  8] = byResult[j] ^ byInData[8 * i  +  j];  //byEnter的前8字节(全0)为初始向量)
			}
//			DoSSMac(byEnter, 16, key, nKeyLen, byResult);     //特别注意
		}

		memcpy(output, byResult, 8);
		strings::AscToHex(Output,strlen((char*)Output) , OutData);
	}



	//ANSI X9.9 MAC
	void DoDesMac(const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output, const BYTE* init_Vector)
	{
		BYTE byVector[8];
		BYTE byTemp[8];
		BYTE byData[128];

		memset(byVector, 0x00, sizeof(byVector));
		memset(byTemp,   0x00, sizeof(byTemp));
		memset(byData,   0x00, sizeof(byData));

		BYTE bySubKey[3][16][48];		//秘钥

		memset(bySubKey, 0x01, sizeof(bySubKey));

		//构造并生成SubKeys
		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
		for (int i = 0; i < nKey; i++)
		{
			SetSubKey(&bySubKey[i], &key[i << 3]);
		}

		int j = nInLen >> 3;

		if (init_Vector != NULL)
		{
			memcpy(byVector, init_Vector, 8);
		}

		if (1 == nKey)	//单倍长Key(8字节)
		{
			for (int i = 0; i < j; ++i, input += 8)
			{
				Xor(input, byVector, 8, byTemp);
				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);

				memcpy(byVector, output, 8);			//将输出设定为扭转变量
			}
		}
		else if (2 == nKey)	//双倍长Key(16字节)
		{
			for (int i = 0; i < j; ++i, input += 8)
			{
				Xor(input, byVector, 8, byTemp);
				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
				RunDes(output, DECRYPT, &bySubKey[1], output);
				RunDes(output, ENCRYPT, &bySubKey[0], output);

				memcpy(byVector, output, 8);			//将输出设定为扭转变量
			}
		}
		else  //三倍长Key(24字节)    尚未验证
		{
			for (int i = 0; i < j; ++i, input += 8)
			{
				Xor(input, byVector, 8, byTemp);
				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
				RunDes(output, DECRYPT, &bySubKey[1], output);
				RunDes(output, ENCRYPT, &bySubKey[2], output);

				memcpy(byVector, output, 8);			//将输出设定为扭转变量
			}
		}
	}

	//input中要有80+00.... input的前8字节作为初始向量
	void DoSSMac(const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output)
	{
		BYTE byInitVec[8];   //初始向量
		BYTE byTemp[8];

		memset(byInitVec, 0x00, sizeof(byInitVec));
		memset(byTemp,   0x00, sizeof(byTemp));

		memcpy(byInitVec, input, 8);

		BYTE bySubKey[3][16][48];		//秘钥

		memset(bySubKey, 0x01, sizeof(bySubKey));

		int i = 0;
		int j = (nInLen >> 3);

		//构造并生成SubKeys
		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
		for (i = 0; i < nKey; i++)
		{
			SetSubKey(&bySubKey[i], &key[i << 3]);
		}

		memcpy(output, input, 8);
		if (1 == nKey)	//单倍长Key(8字节)
		{
			j--;
			for (int i = 0; i < j; ++i)
			{
				Xor(input + 8 * (i + 1), output, 8, output);
				RunDes(output, 0, &bySubKey[0], output);

				//memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
			}
		}
		else if (2 == nKey)	//双倍长Key(16字节)
		{      
			j -= 2;
			for (i = 0; i < j; ++i)
			{
				Xor(input + 8 * (i + 1), output, 8, output);
				RunDes(output, 0, &bySubKey[0], output);       //将输出设定为扭转变量	
			}
			Xor(input + 8 * (++i), output, 8, output);        //最后一块数据和上面加密结果异或
			RunDes(output, 0, &bySubKey[0], output);
			RunDes(output, 1, &bySubKey[1], output);
			RunDes(output, 0, &bySubKey[0], output);
		}
		else  //三倍长Key(24字节)    尚未验证
		{
			//j -= 2;
			for (i = 0, j = (nInLen >> 3) - 2; i < j; ++i, input += 8)
			{
				Xor(input + 8 * (i + 1), output, 8, byTemp);
				RunDes(byTemp, 0, &bySubKey[0], output);

				memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
			}
			Xor(input + 8 * i, output, 8, output);
			RunDes(output, 2, &bySubKey[0], output);
			RunDes(output, 1, &bySubKey[1], output);
			RunDes(output, 0, &bySubKey[0], output);
		}
	}

	//input中不要自己填补80+00....       初始向量固定为8字节的0
	void DoGPMac(const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output)
	{
		BYTE byInData[256];  //密钥,输入数据
		BYTE byEnter[256];
		BYTE byResult[256];  //算法模式,算法操作,输入,结果

		memset(byInData, 0x00, sizeof(byInData));
		memcpy(byInData, input, nInLen);
		byInData[nInLen] = 0x80;
		nInLen++;
		nInLen += (8 - nInLen % 8);  //80 + (nInLen % 8)个00

		int j = 0;
		memset(byResult, 0x00, sizeof(byResult));
		for (int i = 0; i < nInLen / 8; i++)
		{
			memset(byEnter, 0x00, sizeof(byEnter));
			for (j = 0; j < 8; j++)
			{
				byEnter[j + 8] = byResult[j] ^ byInData[8 * i + j];  //byEnter的前8字节(全0)为初始向量)
			}
					DoSSMac(byEnter, 16, key, (BYTE)nKeyLen, byResult);     //特别注意
		}
		
		memcpy(output, byResult, 8);
	}

	string DesVerify(string Stxt)
	{
		string OutPut;
		DoDes(ECB, ENCRYPT, "0000000000000000", Stxt, OutPut);
		return OutPut.substr(0, 6);
	}
}


3. DES加解密工具


     Des工具可以实现Des,3Des,Mac,Disp(离散)等功能,支持批量Des计算(需选择File)。对数据不足8的倍数字节实现自动补齐。DES工具下载地址:http://download.csdn.net/detail/yxstars/7728833,软件界面如下:


[置顶] 算法系列1《DES》_第2张图片



   


文/yanxin8原创,获取更多信息请移步至yanxin8.com...



你可能感兴趣的:([置顶] 算法系列1《DES》)