文章脉络图:
图由点集合和边集合组成,记做G=(V,E),其中点集合不能为空且应该有穷,边集合可以为空。在有关图的概念方面,大部分看名知意,只解释其中几个概念:
邻接矩阵:反映的是顶点间的相邻关系。一个n行n列的矩阵表示由n个顶点的图,如果(i,j)或者<i,j>属于边集合,则矩阵中第i行j列的值为1,否则为0。
从邻接矩阵的定义可以推断,无向图的邻接矩阵是对称的;有向图的邻接矩阵是非对称的。对于无向图而言,邻接矩阵第i行的和为邻接顶点i的度;对于有向图,邻接矩阵第i行表示的和是顶点i的出度,第i列的和表示顶点i的入度。
邻接表:为图的每个顶点建立一个链表,第i个链表中的结点表示与顶点i相关的边。
图的遍历
深度优先:
1.首先访问出发顶点V
2. 依次从V出发搜索V的每个邻接点W;
3. 若W未访问过,则从该点出发继续深度优先遍历;它类似于树的前序遍历。
广度优先:
1.首先访问出发顶点V
2.然后访问与顶点V邻接的全部未访问顶点w、X、Y…
3.然后再依次访问W、X、Y…邻接的未访问的顶点;
例如的深度优先遍历为:V1 V2 V3 V4 V5 V6;广度优先遍历为:V1 V2 V5 V3 V6 V4。
最小生成树
包含图所有顶点的树,成为图的生成树,各边权值之和最小的树成为最小生成树。
普里姆算法:
1. 定义出发点为一个集合
2. 其它点为另外一个集合
3. 找到顶点和其它点的距离,不可到达为无穷大
4. 每确定一个点,则把这个点当做出发点集合中的点,从此点开始再次循环规则
克鲁斯卡尔算法:
1. 先确定各个点之间的距离
2. 画出各个点
3. 距离从小到大排序,依次加入画的顶点中(但是避免形成回路,如果形成回路,则忽略此距离),直到各个点之 间可以连通
拓扑排序
用有向边表示各顶点活动开始的先后顺序,这些顶点组成的网络成为AOV网络。对一个有向无环图的顶点排成一个线性序列,使得有向边起点排在该有向边终点前的序列称之为拓扑序列。拓扑排序不一定唯一。
1. 找到入度为0的点,作为起点
2. 起点完成后,删除该起点的出度
3. 在剩余的aov网络中重复此过程
例如的拓扑排序为:02143567或01243657或02143657或01243567。
关键路径
AOV网络中,如果边上的权表示完成该活动所需的时间,则称这样的AOV为AOE网络。其中关键路径是最长的一条路径。如下:
数据结构暂时先总结到这里,还有很多等待修补的知识,接下来是编译原理的一些总结,欢迎指针……