题意:有N个数,M个操作。(1)"= l r k",表示把区间[l,r]的数全部变成k。(2)"? l r k",查询区间[l,r]范围里。
k比较小,将式子拆开成多项式,一项一项加。数学的东西感觉多些。。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long LL; #define LL(x) (x<<1) #define RR(x) (x<<1|1) #define MID(a,b) (a+((b-a)>>1)) const LL mod=1000000007; const int N=100005; const int K=10; LL C[K][K],S[N][K],a[N]; LL pow(int x,int y) { LL res=1; for(int i=0;i<y;i++) res=(res*(LL)x)%mod; return res; } struct node { int lft,rht; LL valu[K],flag; int mid(){return MID(lft,rht);} void fun(int tmp) { flag=tmp; for(int i=0;i<K;i++) { valu[i]=((((S[rht][i]-S[lft-1][i])%mod+mod)%mod)*flag)%mod; } } void init() { flag=-1; memset(valu,0,sizeof(valu)); } }; struct Seg { node tree[N*4]; void PushUp(int ind) { for(int i=0;i<K;i++) tree[ind].valu[i]=(tree[LL(ind)].valu[i]+tree[RR(ind)].valu[i])%mod; } void PushDown(int ind) { if(tree[ind].flag==-1) return; tree[LL(ind)].fun(tree[ind].flag); tree[RR(ind)].fun(tree[ind].flag); tree[ind].flag=-1; } void build(int lft,int rht,int ind) { tree[ind].lft=lft; tree[ind].rht=rht; tree[ind].init(); if(lft==rht) { for(int i=0;i<K;i++) tree[ind].valu[i]=(a[lft]*pow(lft,i))%mod; } else { int mid=tree[ind].mid(); build(lft,mid,LL(ind)); build(mid+1,rht,RR(ind)); PushUp(ind); } } void updata(int st,int ed,int ind,int flag) { int lft=tree[ind].lft,rht=tree[ind].rht; if(st<=lft&&rht<=ed) tree[ind].fun(flag); else { PushDown(ind); int mid=tree[ind].mid(); if(st<=mid) updata(st,ed,LL(ind),flag); if(ed> mid) updata(st,ed,RR(ind),flag); PushUp(ind); } } LL query(int st,int ed,int ind,int k) { int lft=tree[ind].lft,rht=tree[ind].rht; if(st<=lft&&rht<=ed) return tree[ind].valu[k]; else { PushDown(ind); LL sum=0; int mid=tree[ind].mid(); if(st<=mid) sum=(sum+query(st,ed,LL(ind),k))%mod; if(ed> mid) sum=(sum+query(st,ed,RR(ind),k))%mod; PushUp(ind); return sum%mod; } } }seg; void pre_calu(int n) { for(int i=0;i<=K;i++) C[i][i]=C[i][0]=1; for(int i=2;i<K;i++) for(int j=1;j<i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod; for(int i=1;i<=n;i++) for(int j=0;j<K;j++) S[i][j]=(S[i-1][j]+pow(i,j))%mod; } int main() { int n,m; while(scanf("%d%d",&n,&m)!=EOF) { pre_calu(n); for(int i=1;i<=n;i++) scanf("%I64d",&a[i]); seg.build(1,n,1); while(m--) { char str[5]; int l,r,k; scanf("%s%d%d%d",str,&l,&r,&k); if(str[0]=='=') seg.updata(l,r,1,k); else { LL res=0,t=1; for(int i=0;i<=k;i++) { res=(res+((seg.query(l,r,1,k-i)*C[k][i])%mod*t)%mod)%mod; res=(res+mod)%mod; t=(t*(1-l))%mod; } printf("%I64d\n",res); } } } return 0; }