求网络流有很多算法,这几天学习了两种,记录一下EK算法。
首先是网络流中的一些定义:
V表示整个图中的所有结点的集合.
E表示整个图中所有边的集合.
G = (V,E) ,表示整个图.
s表示网络的源点,t表示网络的汇点.
对于每条边(u,v),有一个容量c(u,v) (c(u,v)>=0),如果c(u,v)=0,则表示(u,v)不存在在网络中。相反,如果原网络中不存在边(u,v),则令c(u,v)=0.
对于每条边(u,v),有一个流量f(u,v).
一个简单的例子.网络可以被想象成一些输水的管道.括号内右边的数字表示管道的容量c,左边的数字表示这条管道的当前流量f.
网络流的三个性质:
1、容量限制: f[u,v]<=c[u,v]
2、反对称性:f[u,v] = - f[v,u]
3、流量平衡: 对于不是源点也不是汇点的任意结点,流入该结点的流量和等于流出该结点的流量和。
只要满足这三个性质,就是一个合法的网络流.
最大流问题,就是求在满足网络流性质的情况下,源点 s 到汇点 t 的最大流量。
求一个网络流的最大流有很多算法 这里首先介绍 增广路算法(EK)
学习算法之前首先看了解这个算法中涉及到的几个图中的定义:
**残量网络
为了更方便算法的实现,一般根据原网络定义一个残量网络。其中r(u,v)为残量网络的容量。
r(u,v) = c(u,v) – f(u,v)
通俗地讲:就是对于某一条边(也称弧),还能再有多少流量经过。
Gf 残量网络,Ef 表示残量网络的边集.
这是上面图的一个残量网络。残量网络(如果网络中一条边的容量为0,则认为这条边不在残量网络中。
r(s,v1)=0,所以就不画出来了。另外举个例子:r(v1,s) = c(v1,s) – f(v1,s) = 0 – (-f(s,v1)) = f(s,v1) = 4.
其中像(v1,s)这样的边称为后向弧,它表示从v1到s还可以增加4单位的流量。
但是从v1到s不是和原网络中的弧的方向相反吗?显然“从v1到s还可以增加4单位流量”这条信息毫无意义。那么,有必要建立这些后向弧吗?
显然,第1个图中的画出来的不是一个最大流。
但是,如果我们把s -> v2 -> v1 -> t这条路径经过的弧的流量都增加2,就得到了该网络的最大流。
注意到这条路径经过了一条后向弧:(v2,v1)。
如果不设立后向弧,算法就不能发现这条路径。
**从本质上说,后向弧为算法纠正自己所犯的错误提供了可能性,它允许算法取消先前的错误的行为(让2单位的流从v1流到v2)
注意,后向弧只是概念上的,在程序中后向弧与前向弧并无区别.
**增广路
增广路定义:在残量网络中的一条从s通往t的路径,其中任意一条弧(u,v),都有r[u,v]>0。
看了这么多概念相信大家对增广路算法已经有大概的思路了吧。
**增广路算法
增广路算法:每次用BFS找一条最短的增广路径,然后沿着这条路径修改流量值(实际修改的是残量网络的边权)。当没有增广路时,算法停止,此时的流就是最大流。
**增广路算法的效率
设n = |V|, m = |E|
每次增广都是一次BFS,效率为O(m),而在最坏的情况下需要(n-2增广。(即除源点和汇点外其他点都没有连通,所有点都只和s与t连通)
所以,总共的时间复杂度为O(m*n),所以在稀疏图中效率还是比较高的。
hdoj 1532是一道可以作为模板题目练手。
模板代码:
#include <cstdio> #include <cstring> #include <iostream> #include <string> #include <algorithm> #include <map> #include <vector> using namespace std; const int N = 1100; const int INF = 0x3f3f3f3f; struct Node { int to;//终点 int cap; //容量 int rev; //反向边 }; vector<Node> v[N]; bool used[N]; void add_Node(int from,int to,int cap) //重边情况不影响 { v[from].push_back((Node){to,cap,v[to].size()}); v[to].push_back((Node){from,0,v[from].size()-1}); } int dfs(int s,int t,int f) { if(s==t) return f; used[s]=true; for(int i=0;i<v[s].size();i++) { Node &tmp = v[s][i]; //注意 if(used[tmp.to]==false && tmp.cap>0) { int d=dfs(tmp.to,t,min(f,tmp.cap)); if(d>0) { tmp.cap-=d; v[tmp.to][tmp.rev].cap+=d; return d; } } } return 0; } int max_flow(int s,int t) { int flow=0; for(;;){ memset(used,false,sizeof(used)); int f=dfs(s,t,INF); if(f==0) return flow; flow+=f; } } int main() { int n,m; while(~scanf("%d%d",&n,&m)) { memset(v,0,sizeof(v)); for(int i=0;i<n;i++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); add_Node(x,y,z); } printf("%d\n",max_flow(1,m)); } }