网络流之最大流算法(EdmondsKarp)

求网络流有很多算法,这几天学习了两种,记录一下EK算法。

首先是网络流中的一些定义:

V表示整个图中的所有结点的集合.
E表示整个图中所有边的集合.
G = (V,E) ,表示整个图.
s表示网络的源点,t表示网络的汇点.
对于每条边(u,v),有一个容量c(u,v)   (c(u,v)>=0),如果c(u,v)=0,则表示(u,v)不存在在网络中。相反,如果原网络中不存在边(u,v),则令c(u,v)=0.
对于每条边(u,v),有一个流量f(u,v).

一个简单的例子.网络可以被想象成一些输水的管道.括号内右边的数字表示管道的容量c,左边的数字表示这条管道的当前流量f.

网络流之最大流算法(EdmondsKarp)_第1张图片

网络流的三个性质:

1、容量限制:  f[u,v]<=c[u,v]
2、反对称性:f[u,v] = - f[v,u]
3、流量平衡:  对于不是源点也不是汇点的任意结点,流入该结点的流量和等于流出该结点的流量和。
只要满足这三个性质,就是一个合法的网络流.

最大流问题,就是求在满足网络流性质的情况下,源点 s 到汇点 t 的最大流量。


求一个网络流的最大流有很多算法 这里首先介绍 增广路算法(EK)

学习算法之前首先看了解这个算法中涉及到的几个图中的定义:


**残量网络

为了更方便算法的实现,一般根据原网络定义一个残量网络。其中r(u,v)为残量网络的容量。
r(u,v) = c(u,v) – f(u,v)
通俗地讲:就是对于某一条边(也称弧),还能再有多少流量经过。
Gf
 残量网络,Ef 表示残量网络的边集.

网络流之最大流算法(EdmondsKarp)_第2张图片

这是上面图的一个残量网络。残量网络(如果网络中一条边的容量为0,则认为这条边不在残量网络中。

r(s,v1)=0,所以就不画出来了。另外举个例子:r(v1,s) = c(v1,s) – f(v1,s) = 0 – (-f(s,v1)) = f(s,v1) = 4.

其中像(v1,s)这样的边称为后向弧,它表示从v1到s还可以增加4单位的流量。

但是从v1到s不是和原网络中的弧的方向相反吗?显然“从v1到s还可以增加4单位流量”这条信息毫无意义。那么,有必要建立这些后向弧吗?

显然,第1个图中的画出来的不是一个最大流。

但是,如果我们把s -> v2 -> v1 -> t这条路径经过的弧的流量都增加2,就得到了该网络的最大流。

注意到这条路径经过了一条后向弧:(v2,v1)。

如果不设立后向弧,算法就不能发现这条路径。

**从本质上说,后向弧为算法纠正自己所犯的错误提供了可能性,它允许算法取消先前的错误的行为(让2单位的流从v1流到v2)

注意,后向弧只是概念上的,在程序中后向弧与前向弧并无区别.


**增广路

增广路定义:在残量网络中的一条从s通往t的路径,其中任意一条弧(u,v),都有r[u,v]>0。

网络流之最大流算法(EdmondsKarp)_第3张图片
如图绿色的即为一条增广路。

看了这么多概念相信大家对增广路算法已经有大概的思路了吧。


**增广路算法

增广路算法:每次用BFS找一条最短的增广路径,然后沿着这条路径修改流量值(实际修改的是残量网络的边权)。当没有增广路时,算法停止,此时的流就是最大流。


**增广路算法的效率

设n = |V|,  m = |E|

每次增广都是一次BFS,效率为O(m),而在最坏的情况下需要(n-2增广。(即除源点和汇点外其他点都没有连通,所有点都只和s与t连通)

所以,总共的时间复杂度为O(m*n),所以在稀疏图中效率还是比较高的。


hdoj 1532是一道可以作为模板题目练手。

模板代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
const int N = 1100;
const int INF = 0x3f3f3f3f;

struct Node
{
    int to;//终点
    int cap; //容量
    int rev;  //反向边
};

vector<Node> v[N];
bool used[N];

void add_Node(int from,int to,int cap)  //重边情况不影响
{
    v[from].push_back((Node){to,cap,v[to].size()});
    v[to].push_back((Node){from,0,v[from].size()-1});
}

int dfs(int s,int t,int f)
{
    if(s==t)
        return f;
    used[s]=true;
    for(int i=0;i<v[s].size();i++)
    {
        Node &tmp = v[s][i];  //注意
        if(used[tmp.to]==false && tmp.cap>0)
        {
            int d=dfs(tmp.to,t,min(f,tmp.cap));
            if(d>0)
            {
                tmp.cap-=d;
                v[tmp.to][tmp.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}

int max_flow(int s,int t)
{
    int flow=0;
    for(;;){
        memset(used,false,sizeof(used));
        int f=dfs(s,t,INF);
        if(f==0)
            return flow;
        flow+=f;
    }
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(v,0,sizeof(v));
        for(int i=0;i<n;i++)
        {
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            add_Node(x,y,z);
        }
        printf("%d\n",max_flow(1,m));
    }
}


你可能感兴趣的:(算法,网络流,最大流,流量,EdmondsKarp)