TCP连接建立系列 — 服务端接收ACK段(二)

本文主要分析:三次握手中最后一个ACK段到达时,服务器端的处理路径。

内核版本:3.6

Author:zhangskd @ csdn blog

 

创建新sock

 

协议族相关的操作函数,我们要看的是TCP/IPv4的实例ipv4_specific。

const struct inet_connection_sock_af_ops ipv4_specific = {
    ...
    .conn_request = tcp_v4_conn_request, /* 处理SYN段 */
    .syn_recv_sock = tcp_v4_syn_recv_sock, /* 创建和初始化一个新的sock */
    ...
};

 

三次握手完成以后,要为新的连接创建一个传输控制块,并初始化传输控制块。

一个TCP传输控制块是由多层组成的,包括:

tcp_sock

inet_connection_sock

inet_sock

sock

sock_common

所以,初始化要做的工作比较多。

/* The three way handshake has completed - we got a valid synack - 
 * now create the new socket.
 */

struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, struct request_sock *req,
    struct dst_entry *dst)
{
    struct inet_request_sock *ireq;
    struct inet_sock *newinet;
    struct tcp_sock *newtp;
    struct sock *newsk;
#ifdef CONFIG_TCP_MD5SIG
    struct tcp_md5sig_key *key;
#endif
    struct ip_options_rcu *inet_opt;

    /* 如果全连接队列满了,那么返回NULL */
    if (sk_acceptq_is_full(sk))
        goto exit_overflow;

    /* 根据监听sock和req,为新连接创建一个传输控制块,并初始化 */
    newsk = tcp_create_openreq_child(sk, req, skb);
    if (! newsk)
        goto exit_nonewsk;

    newsk->sk_gso_type = SKB_GSO_TCPV4;
    inet_sk_rx_dst_set(newsk, skb); /* 保存接收路由缓存 */

    newtp = tcp_sk(newsk);
    newinet = inet_sk(newsk);
    ireq = inet_rsk(req);
    newinet->inet_daddr = ireq->rmt_addr; /* 目的IP */
    newinet->inet_rcv_saddr = ireq->loc_addr;
    newinet->inet_saddr = ireq->loc_addr; /* 源IP */
    inet_opt = ireq->opt;
    rcu_assign_pointer(newinet->inet_opt, inet_opt); /* IP选项 */
    ireq->opt = NULL;

    newinet->mc_index = inet_iif(skb);
    newinet->mc_ttl = ip_hdr(skb)->ttl;
    newinet->rcv_tos = ip_hdr(skb)->tos;
    inet_csk(newsk)->icsk_ext_hdr_len = 0;
    if (inet_opt)
        inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
    newinet->inet_id = newtp->write_seq ^ jiffies;

    if (! dst) {
        dst = inet_csk_route_child_sock(sk, newsk, req);
        if (! dst)
            goto put_and_exit;
    } else {
        /* syncookie case: see end of cookie_v4_check() */
    }
    sk_setup_caps(newsk, dst);

    tcp_mtup_init(newsk); /* MTU probe init */
    tcp_sync_mss(newsk, dst_mtu(dst));
    newtp->advmss = dst_metric_advmss(dst);
    if (tcp_sk(sk)->rx_opt.user_mss && tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
        newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
    tcp_initialize_rcv_mss(newsk);

    if (tcp_rsk(req)->snt_synack) /* 第一个RTT样本 */
        tcp_valid_rtt_meas(newsk, tcp_time_stamp - tcp_rsk(req)->snt_synack);
    newtp->total_retrans = req->retrans;

#ifdef CONFIG_TCP_MD5SIG
    /* Copy over the MD5 key from the original socket */
    key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) &newinet->inet_daddr, AF_INET);
    if (key != NULL) {
        /* We're using one, so create a matching key on the newsk structure.
         * If we fail to get memory, then we end up not copying the key across. Shucks.
         */
        tcp_md5_do_add(newsk, (union tcp_md5_addr *) &newinet->inet_daddr, AF_INET,
            key->key, key->keylen, GFP_ATOMIC);
        sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
    }
#endif

    /* 把newsk链入使用端口的哈希链表中,更新端口的统计信息 */
    if (__inet_inherit_port(sk, newsk) < 0)
        goto put_and_eixt;

    /* 把newsk链入ESTABLISHED状态的哈希表中 */
    __inet_hash_nolisten(newsk, NULL);

    return newsk;

exit_overflow:
    NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
exit_nonewsk:
    dst_release(dst);
exit:
    NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
    return NULL;

put_and_exit:
    tcp_clear_xmit_timers(newsk);
    tcp_cleanup_congestion_control(newsk);
    bh_unlock_sock(newsk);
    sock_put(newsk);
    goto exit;
}

 

根据监听传输控制块sock、连接请求块req,为新的连接创建一个传输控制块sock。

初始化此传输控制块对应的inet_sock、inet_connection_sock、tcp_sock结构中的变量。

struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
{
    /* 克隆一个传输控制块,并对新的传输控制块上锁 */
    struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);

    if (newsk != NULL) {
        cosnt struct inet_request_sock *ireq = inet_rsk(req);
        struct tcp_request_sock *treq = tcp_rsk(req);
        struct inet_connection_sock *newicsk = inet_csk(newsk);
        struct tcp_sock *newtp = tcp_sk(newsk);
        struct tcp_sock *oldtp = tcp_sk(sk);
        struct tcp_cookie_values *oldcvp = oldtp->cookie_values;

        /* 由于TCPCT选项已被废弃,此处不做分析 */
        if (oldcvp != NULL) { ... }

        /* Now setup tcp_sock,初始化tcp_sock实例 */
        newtp->pred_flags = 0;

        /* 接收序号、发送序号相关变量初始化 */
        newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1;
        newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = newtp->snd_up
                                        = treq->snt_isn + 1 + tcp_s_data_size(oldtp);
        
        tcp_prequeue_init(newtp); /* prequeue队列初始化 */
        INIT_LIST_HEAD(&newtp->tsq_node);
        tcp_init_wl(newtp, treq->rcv_isn); /* 上次更新发送窗口的ACK段序号 */

        /* 时延相关变量初始化 */
        newtp->srtt = 0;
        newtp->mdev = TCP_TIMEOUT_INIT;
        newicsk->icsk_rto = TCP_TIMEOUT_INIT;

        /* 拥塞控制相关变量初始化 */
        newtp->packets_out = 0;
        newtp->retrans_out = 0;
        newtp->sacked_out = 0;
        newtp->fackets_out = 0;
        newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
        tcp_enable_early_retrans(newtp);

        newtp->snd_cwnd = TCP_INIT_CWND;
        newtp->snd_cwnd_cnt = 0;
        newtp->bytes_acked = 0;
        newtp->frto_counter = 0;
        newtp->frto_highmark = 0;

        /* 如果拥塞控制算法不为Reno,则把使用的拥塞控制算法模块引用计数加1。
         * 如果该模块还没插入内核,则使用Reno。
         */
        if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops && 
             ! try_module_get(newicsk->icsk_ca_ops->owner))
            newicsk->icsk_ca_ops = &tcp_init_congestion_ops;

        tcp_set_ca_state(newsk, TCP_CA_Open);
        tcp_init_xmit_timers(newsk); /* 初始化几个定时器 */
        skb_queue_head_init(&newtp->out_of_order_queue);
        newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1 + tcp_s_data_size(oldtp);

        /* TCP选项相关 */
        newtp->rx_opt.saw_tstamp = 0;
        newtp->rx_opt.dsack = 0;
        newtp->rx_opt.num_sacks = 0;
        newtp->urg_data = 0;

        /* 如果用户设置了SO_KEEPALIVE选项 */
        if (sock_flag(newsk, SOCK_KEEPOPEN))
            inet_csk_reset_keepalive_timer(newsk, keepalive_time_when(newtp));

        newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
        if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
            if (sysctl_tcp_fack)
                tcp_enable_fack(newtp);
        }

        newtp->window_clamp = req->window_clamp;
        newtp->rcv_ssthresh = req->rcv_wnd;
        newtp->rcv_wnd = req->rcv_wnd;
        newtp->rx_opt.wscale_ok = ireq->wscale_ok;
        if (newtp->rx_opt.wscale_ok) {
            newtp->rx_opt.snd_wscale = ireq->snd_wscale;
            newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
        } else {
            newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
            newtp->window_clamp = min(newtp->window_clamp, 65535U);
        }

        newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale);
        newtp->max_window = newtp->snd_wnd;

        if (newtp->rx_opt.tstamp_ok) {
            newtp->rx_opt.ts_recent = req->ts_recent;
            newtp->rx_opt.ts_recent_stamp = get_seconds();
            newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
        } else {
            newtp->rx_opt.ts_recent_stamp = 0;
            newtp->tcp_header_len = sizeof(struct tcphdr);
        }

#ifdef CONFIG_TCP_MD5SIG
        newtp->md5sig_info = NULL;
        if (newtp->af_specific->md5_lookup(sk, newsk))
            newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
#endif

        if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
            newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;

        newtp->rx_opt.mss_clamp = req->mss;
        TCP_ECN_openreq_child(newtp, req);

        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
    }

    return newsk;
}

 

克隆一个传输控制块,并对新的传输控制块上锁。

/* inet_csk_clone_lock - clone an inet socket, and lock its clone.
 * @sk: the socket to clone
 * @req: request_sock
 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
 *
 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
 */
struct sock *inet_csk_clone_lock(cons struct sock *sk, const struct request_sock *req, const gfp_t priority)
{
    struct sock *newsk = sk_clone_lock(sk, priority); /* 从缓存中分配一个sock,并克隆sk */

    if (newsk != NULL) {
        struct inet_connection_sock *newicsk = inet_csk(newsk);
        newsk->sk_state = TCP_SYN_RECV; /* 新sock的状态为SYN_RECV */
        newicsk->icsk_bind_hash = NULL;  /* 端口绑定的哈希桶 */

        inet_sk(newsk)->inet_dport = inet_rsk(req)->rmt_port; /* 目的端口 */
        inet_sk(newsk)->inet_num = ntohs(inet_rsk(req)->loc_port); /* 源端口 */
        inet_sk(newsk)->inet_sport = inet_rsk(req)->loc_port; /* 源端口 */
        newsk->sk_write_space = sk_stream_write_space; /* write_space callback */

        newicsk->icsk_retransmits = 0;
        newicsk->icsk_backoff = 0;
        newicsk->icsk_probes_out = 0;

        memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
        security_inet_csk_clone(newsk, req);
    }

    return newsk;
}

 

把newsk链入使用端口的哈希链表中,更新端口的统计信息。

int __inet_inherit_port(struct sock *sk, struct sock *child)
{
    struct inet_hashinfo *table = sk->sk_prot->h.hashinfo; /* 指向tcp_hashinfo */
    unsigned short port = inet_sk(child)->inet_num; /* 端口 */
    const int bhash = inet_bhashfn(sock_net(sk), port, table->bhash_size); /* 哈希值 */
    struct inet_bind_hashbucket *head = &table->bhash[bhash]; /* 哈希桶 */
    struct inet_bind_bucket *tb; /* 端口实例 */

    spin_lock(&head->lock); /* 对哈希桶上锁 */
    tb = inet_csk(sk)->icsk_bind_hash;

    if (tb->port != port) {
        /* NOTE: using tproxy and redirecting skbs to a proxy on a different listener port
         * breaks the assumption that the listener socket's icsk_bind_hash is the same
         * as that of the child socket. We have to look up or create a new bind bucket for
         * the child here.
         */
        struct hlist_node *node;

        inet_bind_bucket_for_each(tb, node, &head->chain) {
            if (net_eq(ib_net(tb), sock_net(sk)) && tb->port == port)
                break;
        }

        if (! node) {
            /* 申请和初始化一个inet_bind_bucket */
            tb = inet_bind_bucket_create(table->bind_bucket_cachep, sock_net(sk), head, port);
            if (! tb) {
                spin_unlock(&head->lock);
                return -ENOMEM;
            }
        }
    }

    inet_bind_hash(child, tb, port); /* 把child链入该端口的哈希链表中,更新相关变量 */
    spin_unlock(&head->lock);

    return 0;
}

void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb, const unsigned short snum)
{
    struct inet_hashinfo *hashinfo = sk->sk_prot->h.hashinfo; /* 指向tcp_hashinfo */
    atomic_inc(&hashinfo->bsockets); /* 增加总的绑定次数 */
    inet_sk(sk)->inet_num = snum; /* 保存绑定的端口 */
    sk_add_bind_node(sk, &tb->owners); /* 把此sock链入tb->owners哈希链表中 */
    tb->num_owners++; /* 增加端口绑定次数 */
    inet_csk(sk)->icsk_bind_hash = tb; /* 把此tb作为icsk成员icsk_bind_hash */
}

 

把newsk链入ESTABLISHED状态的哈希表中。

int __inet_hash_nolisten(struct sock *sk, struct inet_timewait_sock *tw)
{
    struct inet_hashinfo *hashinfo = sk->sk_prot->h.hashinfo;
    struct hlist_nulls_head *list;
    spinlock_t *lock;
    struct inet_ehash_bucket *head;
    int twrefcnt = 0;

    WARN_ON(! sk_unhashed(sk)); /* 要求sk不能已经链入哈希链表中 */
    sk->sk_hash = inet_sk_ehashfn(sk); /* 连接的哈希值 */

    head = inet_ehash_bucket(hashinfo, sk->sk_hash); /* 哈希桶 */
    list = &head->chain;
    lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
    
    spin_lock(lock);
    __sk_nulls_add_node_rcu(sk, list); /* 把sk链入到哈希链表中 */

    if (tw) {
        WARN_ON(sk->sk_hash != tw->tw_hash);
        twrefcnt = inet_twsk_unhash(tw);
    }
    spin_unlock(lock);

    sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);

    return twrefcnt;
}

static inline int inet_sk_ehashfn(const struct sock *sk)
{

    const struct inet_sock *inet = inet_sk(sk);

    const __be32 laddr = inet->inet_rcv_saddr;
    const __u16 lport = inet->inet_num;
    const __be32 faddr = inet->inet_daddr;
    const __be16 fport = inet->inet_dport;
    struct net *net = sock_net(sk);

    return inet_ehashfn(net, laddr, lport, faddr, fport);
}

 

唤醒监听进程

 

调用tcp_child_process()来做最后的处理:

1. tcp_ack()处理接收到的ACK,更新child的状态为ESTABLISHED。

    唤醒child上的等待进程,初始化子传输控制块的一些字段。

2. 唤醒监听sock上的等待进程,以便监听进程执行accept()。

3. 如果child被用户进程占用,则先把ACK段添加到backlog队列中。

/* Queue segment on the new socket if the new socket is active,
 * otherwise we just shortcircuit this and continue with the new socket.
 */

int tcp_child_process(struct sock *parent, struct sock *child, sk_buff *skb)
{
    int ret = 0;
    int state = child->sk_state;

    /* child没被用户进程占用 */
    if (! sock_owned_by_user(child)) {
        /* 调用tcp_ack()处理接收的ACK,设置新状态ESTABLISHED,唤醒child上的等待进程,
         * 初始化child的一些字段。
         */
        ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb), skb->len);
        
        /* Wakeup parent, send SIGIO.
         * 实例为sock_def_readable,唤醒调用accept()的进程。
         */
        if (state == TCP_SYN_RECV && child->sk_state != state)
            parent->sk_data_ready(parent, 0);

    } else { /* 如果child被用户进程占用,则先把skb添加到backlog队列中 */
        __sk_add_backlog(child, skb); 
    }

    bh_unlock_sock(child);
    sock_put(child);
    return ret;
}

把数据包添加到backlog队列中。

static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
{
    /* dont let skb not refcounted, we are going to leave rcu lock */
    skb_dst_force(skb);

    /* backlog队列为空时 */
    if (! sk->sk_backlog.tail)
        sk->sk_backlog.head = skb;
    else
       sk->sk_backlog.tail->next = skb;

    sk->sk_backlog.tail = skb;
    skb->next = NULL;
}

 

子传输控制块调用tcp_ack()处理收到的ACK,把子传输控制块的状态从TCP_SYN_RECV更新为TCP_ESTABLISHED,

并唤醒子传输控制块上的等待进程,更新子传输控制块的一些字段。

int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th, unsigned int len)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct inet_connection_sock *icsk = inet_csk(sk);
    int queued = 0;

    tp->rx_opt.saw_tstamp = 0;

    switch(sk->sk_state) {
        ...
    }

    if (! tcp_validate_incoming(sk, skb, th, 0))
        return 0;

    /* step 5: check the ACK field */
    if (th->ack) {
        int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; /* 进入ACK处理路径 */

        switch (sk->sk_state) {
            case TCP_SYN_RECV:
                if (acceptable) {
                    tp->copied_seq = tp->rcv_nxt;
                    smp_mb();

                    /* 在这里,才从TCP_SYN_RECV变为TCP_ESTABLISHED */
                    tcp_set_state(sk, TCP_ESTABLISHED);

                    sk->sk_state_change(sk); /* 实例为sock_def_wakeup(),唤醒sk上的等待进程*/

                    /* Note, that this wakeup is only for marginal crossed SYN case.
                     * Passively Open sockets are not waked up, because sk->sk_sleep == NULL
                     * and sk->sk_socket == NULL.
                     */
                    if (sk->sk_socket)
                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);

                    tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
                    tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
                    tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
                    if (tp->rx_opt.tstamp_ok)
                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;

                    /* Make sure socket is routed, for correct metrics. */
                    icsk->icsk_af_ops->rebuild_header(sk);

                    tcp_init_metrics(sk); /* 根据路由缓存信息初始化控制块 */
                    tcp_init_congestion_control(sk); /* 初始化拥塞控制算法 */

                    /* Prevent spurious tcp_cwnd_restart() on first data packet. */
                    tp->lsndtime = tcp_time_stamp;

                    tcp_mtup_init(sk);
                    tcp_initialize_rcv_mss(sk);
                    tcp_init_buffer_space(sk);
                    tcp_fast_path_on(tp);
                } else
                    return 1;

                break;
                ...
        } 
    } else
        goto discard;
    ...
discard:
        __kfree_skb(skb);
    }
    return 0;
}
static void sock_def_wakeup(struct sock *sk)
{
    struct socket_wq *wq;
    rcu_read_lock();

    wq = rcu_dereference(sk->sk_wq);
    if (wq_has_sleeper(wq)) /* 如果sock上有等待任务 */
        wake_up_interruptible_all(&wq->wait); /* 唤醒全部的等待任务 */
    rcu_read_unlock();
}

/* check if there are any waiting processes. */
static inline bool wq_has_sleeper(struct socket_wq *wq)
{
    smp_mb();
    return wq && waitqueue_active(&wq->wait);
}

static inline int waitqueue_active(wait_queue_head_t *q)
{
    return ! list_empty(&q->task_list);
}

#define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)

void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key)
{
    unsigned long flags;
    spin_lock_irqsave(&q->lock, flags);
    __wake_up_common(q, mode, nr_exclusive, 0, key);
    spin_unlock_irqrestore(&q->lock, flags);
}

static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive,
    int wake_flags, void *key)
{
    wait_queue_t *curr, *next;

    list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
        unsigned flags = curr->flags;

        if (curr->func(curr, mode, wake_flags, key) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
            break;
    }
}


 

你可能感兴趣的:(tcpip,linux内核)