本文主要分析:三次握手中最后一个ACK段到达时,服务器端的处理路径。
内核版本:3.6
Author:zhangskd @ csdn blog
协议族相关的操作函数,我们要看的是TCP/IPv4的实例ipv4_specific。
const struct inet_connection_sock_af_ops ipv4_specific = { ... .conn_request = tcp_v4_conn_request, /* 处理SYN段 */ .syn_recv_sock = tcp_v4_syn_recv_sock, /* 创建和初始化一个新的sock */ ... };
三次握手完成以后,要为新的连接创建一个传输控制块,并初始化传输控制块。
一个TCP传输控制块是由多层组成的,包括:
tcp_sock
inet_connection_sock
inet_sock
sock
sock_common
所以,初始化要做的工作比较多。
/* The three way handshake has completed - we got a valid synack - * now create the new socket. */ struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst) { struct inet_request_sock *ireq; struct inet_sock *newinet; struct tcp_sock *newtp; struct sock *newsk; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *key; #endif struct ip_options_rcu *inet_opt; /* 如果全连接队列满了,那么返回NULL */ if (sk_acceptq_is_full(sk)) goto exit_overflow; /* 根据监听sock和req,为新连接创建一个传输控制块,并初始化 */ newsk = tcp_create_openreq_child(sk, req, skb); if (! newsk) goto exit_nonewsk; newsk->sk_gso_type = SKB_GSO_TCPV4; inet_sk_rx_dst_set(newsk, skb); /* 保存接收路由缓存 */ newtp = tcp_sk(newsk); newinet = inet_sk(newsk); ireq = inet_rsk(req); newinet->inet_daddr = ireq->rmt_addr; /* 目的IP */ newinet->inet_rcv_saddr = ireq->loc_addr; newinet->inet_saddr = ireq->loc_addr; /* 源IP */ inet_opt = ireq->opt; rcu_assign_pointer(newinet->inet_opt, inet_opt); /* IP选项 */ ireq->opt = NULL; newinet->mc_index = inet_iif(skb); newinet->mc_ttl = ip_hdr(skb)->ttl; newinet->rcv_tos = ip_hdr(skb)->tos; inet_csk(newsk)->icsk_ext_hdr_len = 0; if (inet_opt) inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; newinet->inet_id = newtp->write_seq ^ jiffies; if (! dst) { dst = inet_csk_route_child_sock(sk, newsk, req); if (! dst) goto put_and_exit; } else { /* syncookie case: see end of cookie_v4_check() */ } sk_setup_caps(newsk, dst); tcp_mtup_init(newsk); /* MTU probe init */ tcp_sync_mss(newsk, dst_mtu(dst)); newtp->advmss = dst_metric_advmss(dst); if (tcp_sk(sk)->rx_opt.user_mss && tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; tcp_initialize_rcv_mss(newsk); if (tcp_rsk(req)->snt_synack) /* 第一个RTT样本 */ tcp_valid_rtt_meas(newsk, tcp_time_stamp - tcp_rsk(req)->snt_synack); newtp->total_retrans = req->retrans; #ifdef CONFIG_TCP_MD5SIG /* Copy over the MD5 key from the original socket */ key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) &newinet->inet_daddr, AF_INET); if (key != NULL) { /* We're using one, so create a matching key on the newsk structure. * If we fail to get memory, then we end up not copying the key across. Shucks. */ tcp_md5_do_add(newsk, (union tcp_md5_addr *) &newinet->inet_daddr, AF_INET, key->key, key->keylen, GFP_ATOMIC); sk_nocaps_add(newsk, NETIF_F_GSO_MASK); } #endif /* 把newsk链入使用端口的哈希链表中,更新端口的统计信息 */ if (__inet_inherit_port(sk, newsk) < 0) goto put_and_eixt; /* 把newsk链入ESTABLISHED状态的哈希表中 */ __inet_hash_nolisten(newsk, NULL); return newsk; exit_overflow: NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); exit_nonewsk: dst_release(dst); exit: NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); return NULL; put_and_exit: tcp_clear_xmit_timers(newsk); tcp_cleanup_congestion_control(newsk); bh_unlock_sock(newsk); sock_put(newsk); goto exit; }
根据监听传输控制块sock、连接请求块req,为新的连接创建一个传输控制块sock。
初始化此传输控制块对应的inet_sock、inet_connection_sock、tcp_sock结构中的变量。
struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb) { /* 克隆一个传输控制块,并对新的传输控制块上锁 */ struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); if (newsk != NULL) { cosnt struct inet_request_sock *ireq = inet_rsk(req); struct tcp_request_sock *treq = tcp_rsk(req); struct inet_connection_sock *newicsk = inet_csk(newsk); struct tcp_sock *newtp = tcp_sk(newsk); struct tcp_sock *oldtp = tcp_sk(sk); struct tcp_cookie_values *oldcvp = oldtp->cookie_values; /* 由于TCPCT选项已被废弃,此处不做分析 */ if (oldcvp != NULL) { ... } /* Now setup tcp_sock,初始化tcp_sock实例 */ newtp->pred_flags = 0; /* 接收序号、发送序号相关变量初始化 */ newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1; newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1 + tcp_s_data_size(oldtp); tcp_prequeue_init(newtp); /* prequeue队列初始化 */ INIT_LIST_HEAD(&newtp->tsq_node); tcp_init_wl(newtp, treq->rcv_isn); /* 上次更新发送窗口的ACK段序号 */ /* 时延相关变量初始化 */ newtp->srtt = 0; newtp->mdev = TCP_TIMEOUT_INIT; newicsk->icsk_rto = TCP_TIMEOUT_INIT; /* 拥塞控制相关变量初始化 */ newtp->packets_out = 0; newtp->retrans_out = 0; newtp->sacked_out = 0; newtp->fackets_out = 0; newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tcp_enable_early_retrans(newtp); newtp->snd_cwnd = TCP_INIT_CWND; newtp->snd_cwnd_cnt = 0; newtp->bytes_acked = 0; newtp->frto_counter = 0; newtp->frto_highmark = 0; /* 如果拥塞控制算法不为Reno,则把使用的拥塞控制算法模块引用计数加1。 * 如果该模块还没插入内核,则使用Reno。 */ if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops && ! try_module_get(newicsk->icsk_ca_ops->owner)) newicsk->icsk_ca_ops = &tcp_init_congestion_ops; tcp_set_ca_state(newsk, TCP_CA_Open); tcp_init_xmit_timers(newsk); /* 初始化几个定时器 */ skb_queue_head_init(&newtp->out_of_order_queue); newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1 + tcp_s_data_size(oldtp); /* TCP选项相关 */ newtp->rx_opt.saw_tstamp = 0; newtp->rx_opt.dsack = 0; newtp->rx_opt.num_sacks = 0; newtp->urg_data = 0; /* 如果用户设置了SO_KEEPALIVE选项 */ if (sock_flag(newsk, SOCK_KEEPOPEN)) inet_csk_reset_keepalive_timer(newsk, keepalive_time_when(newtp)); newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) { if (sysctl_tcp_fack) tcp_enable_fack(newtp); } newtp->window_clamp = req->window_clamp; newtp->rcv_ssthresh = req->rcv_wnd; newtp->rcv_wnd = req->rcv_wnd; newtp->rx_opt.wscale_ok = ireq->wscale_ok; if (newtp->rx_opt.wscale_ok) { newtp->rx_opt.snd_wscale = ireq->snd_wscale; newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; } else { newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; newtp->window_clamp = min(newtp->window_clamp, 65535U); } newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale); newtp->max_window = newtp->snd_wnd; if (newtp->rx_opt.tstamp_ok) { newtp->rx_opt.ts_recent = req->ts_recent; newtp->rx_opt.ts_recent_stamp = get_seconds(); newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; } else { newtp->rx_opt.ts_recent_stamp = 0; newtp->tcp_header_len = sizeof(struct tcphdr); } #ifdef CONFIG_TCP_MD5SIG newtp->md5sig_info = NULL; if (newtp->af_specific->md5_lookup(sk, newsk)) newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; #endif if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len) newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; newtp->rx_opt.mss_clamp = req->mss; TCP_ECN_openreq_child(newtp, req); TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS); } return newsk; }
克隆一个传输控制块,并对新的传输控制块上锁。
/* inet_csk_clone_lock - clone an inet socket, and lock its clone. * @sk: the socket to clone * @req: request_sock * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) */ struct sock *inet_csk_clone_lock(cons struct sock *sk, const struct request_sock *req, const gfp_t priority) { struct sock *newsk = sk_clone_lock(sk, priority); /* 从缓存中分配一个sock,并克隆sk */ if (newsk != NULL) { struct inet_connection_sock *newicsk = inet_csk(newsk); newsk->sk_state = TCP_SYN_RECV; /* 新sock的状态为SYN_RECV */ newicsk->icsk_bind_hash = NULL; /* 端口绑定的哈希桶 */ inet_sk(newsk)->inet_dport = inet_rsk(req)->rmt_port; /* 目的端口 */ inet_sk(newsk)->inet_num = ntohs(inet_rsk(req)->loc_port); /* 源端口 */ inet_sk(newsk)->inet_sport = inet_rsk(req)->loc_port; /* 源端口 */ newsk->sk_write_space = sk_stream_write_space; /* write_space callback */ newicsk->icsk_retransmits = 0; newicsk->icsk_backoff = 0; newicsk->icsk_probes_out = 0; memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); security_inet_csk_clone(newsk, req); } return newsk; }
把newsk链入使用端口的哈希链表中,更新端口的统计信息。
int __inet_inherit_port(struct sock *sk, struct sock *child) { struct inet_hashinfo *table = sk->sk_prot->h.hashinfo; /* 指向tcp_hashinfo */ unsigned short port = inet_sk(child)->inet_num; /* 端口 */ const int bhash = inet_bhashfn(sock_net(sk), port, table->bhash_size); /* 哈希值 */ struct inet_bind_hashbucket *head = &table->bhash[bhash]; /* 哈希桶 */ struct inet_bind_bucket *tb; /* 端口实例 */ spin_lock(&head->lock); /* 对哈希桶上锁 */ tb = inet_csk(sk)->icsk_bind_hash; if (tb->port != port) { /* NOTE: using tproxy and redirecting skbs to a proxy on a different listener port * breaks the assumption that the listener socket's icsk_bind_hash is the same * as that of the child socket. We have to look up or create a new bind bucket for * the child here. */ struct hlist_node *node; inet_bind_bucket_for_each(tb, node, &head->chain) { if (net_eq(ib_net(tb), sock_net(sk)) && tb->port == port) break; } if (! node) { /* 申请和初始化一个inet_bind_bucket */ tb = inet_bind_bucket_create(table->bind_bucket_cachep, sock_net(sk), head, port); if (! tb) { spin_unlock(&head->lock); return -ENOMEM; } } } inet_bind_hash(child, tb, port); /* 把child链入该端口的哈希链表中,更新相关变量 */ spin_unlock(&head->lock); return 0; } void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb, const unsigned short snum) { struct inet_hashinfo *hashinfo = sk->sk_prot->h.hashinfo; /* 指向tcp_hashinfo */ atomic_inc(&hashinfo->bsockets); /* 增加总的绑定次数 */ inet_sk(sk)->inet_num = snum; /* 保存绑定的端口 */ sk_add_bind_node(sk, &tb->owners); /* 把此sock链入tb->owners哈希链表中 */ tb->num_owners++; /* 增加端口绑定次数 */ inet_csk(sk)->icsk_bind_hash = tb; /* 把此tb作为icsk成员icsk_bind_hash */ }
把newsk链入ESTABLISHED状态的哈希表中。
int __inet_hash_nolisten(struct sock *sk, struct inet_timewait_sock *tw) { struct inet_hashinfo *hashinfo = sk->sk_prot->h.hashinfo; struct hlist_nulls_head *list; spinlock_t *lock; struct inet_ehash_bucket *head; int twrefcnt = 0; WARN_ON(! sk_unhashed(sk)); /* 要求sk不能已经链入哈希链表中 */ sk->sk_hash = inet_sk_ehashfn(sk); /* 连接的哈希值 */ head = inet_ehash_bucket(hashinfo, sk->sk_hash); /* 哈希桶 */ list = &head->chain; lock = inet_ehash_lockp(hashinfo, sk->sk_hash); spin_lock(lock); __sk_nulls_add_node_rcu(sk, list); /* 把sk链入到哈希链表中 */ if (tw) { WARN_ON(sk->sk_hash != tw->tw_hash); twrefcnt = inet_twsk_unhash(tw); } spin_unlock(lock); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); return twrefcnt; } static inline int inet_sk_ehashfn(const struct sock *sk) { const struct inet_sock *inet = inet_sk(sk); const __be32 laddr = inet->inet_rcv_saddr; const __u16 lport = inet->inet_num; const __be32 faddr = inet->inet_daddr; const __be16 fport = inet->inet_dport; struct net *net = sock_net(sk); return inet_ehashfn(net, laddr, lport, faddr, fport); }
调用tcp_child_process()来做最后的处理:
1. tcp_ack()处理接收到的ACK,更新child的状态为ESTABLISHED。
唤醒child上的等待进程,初始化子传输控制块的一些字段。
2. 唤醒监听sock上的等待进程,以便监听进程执行accept()。
3. 如果child被用户进程占用,则先把ACK段添加到backlog队列中。
/* Queue segment on the new socket if the new socket is active, * otherwise we just shortcircuit this and continue with the new socket. */ int tcp_child_process(struct sock *parent, struct sock *child, sk_buff *skb) { int ret = 0; int state = child->sk_state; /* child没被用户进程占用 */ if (! sock_owned_by_user(child)) { /* 调用tcp_ack()处理接收的ACK,设置新状态ESTABLISHED,唤醒child上的等待进程, * 初始化child的一些字段。 */ ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb), skb->len); /* Wakeup parent, send SIGIO. * 实例为sock_def_readable,唤醒调用accept()的进程。 */ if (state == TCP_SYN_RECV && child->sk_state != state) parent->sk_data_ready(parent, 0); } else { /* 如果child被用户进程占用,则先把skb添加到backlog队列中 */ __sk_add_backlog(child, skb); } bh_unlock_sock(child); sock_put(child); return ret; }
把数据包添加到backlog队列中。
static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb not refcounted, we are going to leave rcu lock */ skb_dst_force(skb); /* backlog队列为空时 */ if (! sk->sk_backlog.tail) sk->sk_backlog.head = skb; else sk->sk_backlog.tail->next = skb; sk->sk_backlog.tail = skb; skb->next = NULL; }
子传输控制块调用tcp_ack()处理收到的ACK,把子传输控制块的状态从TCP_SYN_RECV更新为TCP_ESTABLISHED,
并唤醒子传输控制块上的等待进程,更新子传输控制块的一些字段。
int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th, unsigned int len) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); int queued = 0; tp->rx_opt.saw_tstamp = 0; switch(sk->sk_state) { ... } if (! tcp_validate_incoming(sk, skb, th, 0)) return 0; /* step 5: check the ACK field */ if (th->ack) { int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; /* 进入ACK处理路径 */ switch (sk->sk_state) { case TCP_SYN_RECV: if (acceptable) { tp->copied_seq = tp->rcv_nxt; smp_mb(); /* 在这里,才从TCP_SYN_RECV变为TCP_ESTABLISHED */ tcp_set_state(sk, TCP_ESTABLISHED); sk->sk_state_change(sk); /* 实例为sock_def_wakeup(),唤醒sk上的等待进程*/ /* Note, that this wakeup is only for marginal crossed SYN case. * Passively Open sockets are not waked up, because sk->sk_sleep == NULL * and sk->sk_socket == NULL. */ if (sk->sk_socket) sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); tp->snd_una = TCP_SKB_CB(skb)->ack_seq; tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); if (tp->rx_opt.tstamp_ok) tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; /* Make sure socket is routed, for correct metrics. */ icsk->icsk_af_ops->rebuild_header(sk); tcp_init_metrics(sk); /* 根据路由缓存信息初始化控制块 */ tcp_init_congestion_control(sk); /* 初始化拥塞控制算法 */ /* Prevent spurious tcp_cwnd_restart() on first data packet. */ tp->lsndtime = tcp_time_stamp; tcp_mtup_init(sk); tcp_initialize_rcv_mss(sk); tcp_init_buffer_space(sk); tcp_fast_path_on(tp); } else return 1; break; ... } } else goto discard; ... discard: __kfree_skb(skb); } return 0; }
static void sock_def_wakeup(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (wq_has_sleeper(wq)) /* 如果sock上有等待任务 */ wake_up_interruptible_all(&wq->wait); /* 唤醒全部的等待任务 */ rcu_read_unlock(); } /* check if there are any waiting processes. */ static inline bool wq_has_sleeper(struct socket_wq *wq) { smp_mb(); return wq && waitqueue_active(&wq->wait); } static inline int waitqueue_active(wait_queue_head_t *q) { return ! list_empty(&q->task_list); } #define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL) void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; spin_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr_exclusive, 0, key); spin_unlock_irqrestore(&q->lock, flags); } static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, int wake_flags, void *key) { wait_queue_t *curr, *next; list_for_each_entry_safe(curr, next, &q->task_list, task_list) { unsigned flags = curr->flags; if (curr->func(curr, mode, wake_flags, key) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) break; } }