GNU LD

今天把vivi所用到的ld的用法都看懂了,常见的选项含义也清楚了。翻看了一下kernel的链接脚本,发现相当复杂,并且需要对全局有很好的把握,对整个的地址空间分配也必须清楚。这点暂时还做不到,属于后续工作。先把ld的基本用法总结一下,因为《Linkers and Loaders》还没有读完,所以暂时还不能作出总结。不过,对链接和加载已经有了更深入的认识。在读using ld时,很多地方自然就理解了。慢慢来,把这块知识体协理顺。

 
1、什么是ld?它有什么作用?
 
    ld是GNU binutils工具集中的一个,是众多Linkers(链接器)的一种。完成的功能自然也就是链接器的基本功能: 把各种目标文件和库文件链接起来并重定向它们的数据完成符号解析。Linking其实主要就是完成四个方面的工作: storage allocationsymbol managementlibrariesrelocation
 
    ld可以识别一种由 Linker command Language表示的linker script脚本文件来 显式的控制链接的过程。通过BFD(Binary Format Description)库,ld可以读取和操作COFF(common object file format)、ELF(executable and linking format)、a.out等各种格式的目标文件。
 
2、常用的选项
 
-b TARGET  设置目标文件的文件格式
-e ADDRESS 设置目标文件的开始地址
-EB  链接big-endian的目标文件(如果是在小端格式的系统上进行编译,是不能编译出大端格式的目标文件)
-EL  链接small-endian的目标文件
-l LIBNAME    创建执行程序时要链接的库文件(比如某个库为test,则可以为-ltest)
-L DIRECTORY  寻找要链接的库文件时搜索的文件路径
-o FILE  设置输出文件的名字
-s  去除输出文件中的所有符号信息
-S  去除输出文件中的调试符号信息
-T FILE  读取链接描述脚本,以确定符号等的定位地址 -Tarch/vivi.lds
-v  输出ld的版本信息
-x  去除所有的局部符号信息
-X  去除临时的局部符号信息,默认情况下会设置这个选项
-Bstatic   创建的输出文件链接静态链接库
-Bdynamic  创建的输出文件链接动态链接库
 
-Tbss ADDRESS  设置section bss的起始地址
-Tdata ADDRESS 设置section data的起始地址
-Ttext ADDRESS 设置section text的起始地址
上面三个选项,通过利用选项来指定输出文件各个端的VMA,其实跟读取脚本文件,从脚本文件中获取到VMA是一样的效果
 
3、链接描述脚本
 
    链接描述脚本描述了各个输入文件的各个section如何映射到输出文件的各section中(如何将多个目标文件中的各个section映射到单个输出文件的section中),并控制输出文件中section和符号的内存布局。
 
    目标文件中每个section都有名字和大小,而且可以标识为 loadable表示该section可以加载到内存中)、 allocatable表示必须为这个section开辟一块空间,但是没有实际内容下载到这里)。如果不是loadable或者allocatable,则一般含有调试信息。
 
    每个有loadable或allocatable标识的输出section有两种地址,一种是VMA(Virtual Memory Address),这种地址是输出文件运行时section的运行地址;一种是LMA(Load Memory Address),这种地址是加载输出文件时section的加载地址。一般,这两种地址相同。但在嵌入式系统中,经常存在执行地址和加载地址不一致的情况。如把输出文件加载到开发板的flash存储器中(地址由LMA指定),但运行时,要把flash存储器中的输出文件复制到SDRAM中运行(地址有VMA指定)。
 上面的两种地址在嵌入式系统系统中很重要,一般我们会将boot,kernel,rootfs等的映像文件会加载到开发板的flash上在真正运行时才会从flash中将输出文件复制到SDRAM中来运行
 
 
    在链接脚本中使用注释,可以用“/*...*/”。
 
    每个目标文件有许多符号,每个符号有一个名字和一个地址,一个符号可以是定义的,也可以是未定义的。 对于普通符号,需要一个特殊的标识,因为在目标文件中,普通符号没有一个特定的输入section。链接器会把普通符号处理成好像它们都在一个叫做COMMON的section中。
 
下面给出vivi的ld script的内容及分析。
(1)[Makefile]
 

LINKFLAGS = -Tarch/vivi.lds -Bstatic

 
    可见,链接的脚本是arch/vivi.lds,而且链接静态库。但是在arch下没有vivi.lds,而是有vivi.lds.in。看了一下vivi.lds.in的内容,
 

SECTIONS {
  . = TEXTADDR;
  .text : { *(.text) }
  .data ALIGN(4) : { *(.data) }
  .bss ALIGN(4) : { *(.bss) *(COMMON) }
}

 
    很明显,这个就是原始的vivi的链接脚本。但是存在一个变量TEXTADDR没有赋值,也就是说,这个量根据配置的不同是不同的,所以肯定就在Makefile中执行了生成方法。下一步就要看[arch/Makefile]
 
(2)[arch/Makefile]
 

LDSCRIPT = arch/vivi.lds.in

 

ifeq ($(CONFIG_ARCH_S3C2410),y)
MACHINE = s3c2410
  ifeq ($(CONFIG_S3C2410_NAND_BOOT),y)
    TEXTADDR = 0x33f00000
  else
    TEXTADDR = 0x00000000
  endif
endif

 

vivi: $(HEAD) arch/vivi.lds

arch/vivi.lds: $(LDSCRIPT)
        @sed s/TEXTADDR/$(TEXTADDR)/ $(LDSCRIPT) >$@

 
    很明显,这步主要完成的工作就是要把vivi.lds.in文件中的TEXTADDR用配置后的实际值来代替。根据我的配置,这里我的TEXTADDR就是0x33f00000.那么我们就可以看到vivi.lds脚本文件中内容,它一般都是从某个原始的脚本文件生成过来的,在原始脚本文件中可能有些变量还没有进行定义。
 
 

SECTIONS {
  . = 0x33f00000;
  .text : { *(.text) }
  .data ALIGN(4) : { *(.data) }
  .bss ALIGN(4) : { *(.bss) *(COMMON) }
}

一个程序通过.text,.data,.bss等伪指令设定其所属的段,其中text段为代码段,data段为已经初始化的数据段,bss段为尚未初始化的数据段,因此,当程序编写好以后,必须要告诉编译器怎样来组织其中的各段,各段的起始地址是多少,这个工作就是通过链接脚本文件完成的。   

 

SECTIONS表示段。第一行表示当前地址为0x33f00000,就是VMA,同时也是text段的起始地址。第二行用了通配符*表示所有字符,这里的意思就是说指定的每个目标文件的text section的内容都放到同一个.text中。第三行表示指定的每个目标文件的data section的内容都放到同一个.data中,而且要四字节边界对齐。第四行表示指定的每个目标文件的bss section的内容都放到同一个.bss中,所有的普通符号都放到COMMON中,而且要四字节边界对齐。

    这算是最为简单的ld scripts,不过也够用了。如果不考虑对齐等因素,则可以直接在命令行中指定-Ttext 0x33f00000,就可以完成了。当然,对Linux kernel等,ld scripts要处理复杂的内存分配等操作,相应的要复杂一些,读那些的方法就是查阅using ld手册,同时还要研究MCU的内存分配,这样才能作出合理的安排。

你可能感兴趣的:(工作,脚本,Flash,makefile,Allocation,linker)