最长上升子序列(LIS)长度

转自:http://www.slyar.com/blog/poj-2533-cpp.html

POJ 2533 Longest Ordered Subsequence


属于简单的经典的DP,求最长上升子序列(LIS)。先研究了O(n^2)的思路。

令A[i]表示输入第i个元素,D[i]表示从A[1]到A[i]中以A[i]结尾的最长子序列长度。对于任意的0 <  j <= i-1,如果A(j) < A(i),则A(i)可以接在A(j)后面形成一个以A(i)结尾的新的最长上升子序列。对于所有的 0 <  j <= i-1,我们需要找出其中的最大值。

DP状态转移方程:

D[i] = max{1, D[j] + 1} (j = 1, 2, 3, ..., i-1 且 A[j] < A[i])

解释一下这个方程,i, j在范围内:

如果 A[j] < A[i] ,则D[i] = D[j] + 1

如果 A[j] >= A[i] ,则D[i] = 1

#include <iostream>
#define SIZE 1001
 
using namespace std;
 
int main()
{
    int i, j, n, max;
    /* a[i]表示输入第i个元素 */
    int a[SIZE];
    /* d[i]表示以a[i]结尾的最长子序列长度 */
    int d[SIZE];
 
    cin >> n;
    for (i = 1; i <= n; i++)
    {
        cin >> a[i];
    }
 
    max = 0;
    for (i = 1; i <= n; i++)
    {
        d[i] = 1;
        for (j = 1; j <= i - 1; j++)
        {
            if (a[j] < a[i] && d[i] < d[j] + 1)
            {
                d[i] = d[j] + 1;
            }
        }
        /* 记录最长子序列 */
        if (d[i] > max) max = d[i];
    }
 
    cout << max << endl;
 
    //system("pause");
    return 0;
}


还有一个O(nlogn)的算法:

这个算法其实已经不是DP了,有点像贪心。至于复杂度降低其实是因为这个算法里面用到了二分搜索。本来有N个数要处理是O(n),每次计算要查找N次还是O(n),一共就是O(n^2);现在搜索换成了O(logn)的二分搜索,总的复杂度就变为O(nlogn)了。

这个算法的具体操作如下(by RyanWang):

开一个栈,每次取栈顶元素top和读到的元素temp做比较,如果temp > top 则将temp入栈;如果temp < top则二分查找栈中的比temp大的第1个数,并用temp替换它。 最长序列长度即为栈的大小top。

这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x],用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。

举例:原序列为1,5,8,3,6,7

栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。但是这个代码只能求出长度,并不能求出具体的序列

双端LIS:http://blog.csdn.net/v_JULY_v/article/details/6419466

也是基于这个算法,但是记录了每个i对应的最长上升序列的长度

用该算法完成POJ2533的具体代码如下:

#include <iostream>
#define SIZE 1001
 
using namespace std;
 
int main()
{
    int i, j, n, top, temp;
    int stack[SIZE];
    cin >> n;
 
    top = 0;
    /* 第一个元素可能为0 */
    stack[0] = -1;
    for (i = 0; i < n; i++)
    {
        cin >> temp;
        /* 比栈顶元素大数就入栈 */
        if (temp > stack[top])
        {
            stack[++top] = temp;
        }
        else
        {
            int low = 1, high = top;
            int mid;
            /* 二分检索栈中比temp大的第一个数 */
            while(low <= high)
            {
                mid = (low + high) / 2;
                if (temp > stack[mid])//
                {
                    low = mid + 1;
                }
                else
                {
                    high = mid - 1;
                }
            }
            /* 用temp替换 */
            stack[low] = temp;
        }
    }
 
    /* 最长序列数就是栈的大小 */
    cout << top << endl;
 
    //system("pause");
    return 0;
}



总体思想就是从左到右扫描,保证栈的长度是增长的,具体原因,不太理解

算法3 O(nlogn)
转自: http://www.cppblog.com/superKiki/archive/2011/04/06/143500.html

设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。 

现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足 
(1)x < y < t 
(2)A[x] < A[y] < A[t] 
(3)F[x] = F[y] 
此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢? 
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。 
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。 

注意到D[]的两个特点: 
(1) D[k]的值是在整个计算过程中是单调不上升的。 
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。 

利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上 升子序列的长度。 

在 上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的 时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!


#include <iostream>
using  namespace std;
int find( int *a, int len, int n) // 若返回值为x,则a[x]>=n>a[x-1]
{
     int left=0,right=len,mid=(left+right)/2;
     while(left<=right)
    {
         if(n>a[mid]) left=mid+1;
         else  if(n<a[mid]) right=mid-1;
         else  return mid;
        mid=(left+right)/2;
    }
     return left;  
}
void fill( int *a, int n)
{
     for( int i=0;i<=n;i++)
        a[i]=1000;
}
int main()
{
     int max,i,j,n,a[100],b[100],c[100];
     while(cin>>n)
    {
        fill(c,n+1);
         for(i=0;i<n;i++)
            cin>>a[i];
        c[0]=-1; //     …………………………………………1
        c[1]=a[0]; //         ……………………………………2
        b[0]=1; //      …………………………………………3
         for(i=1;i<n;i++) //         ………………………………4
        {
            j=find(c,n+1,a[i]); //    ……………………5找到长度最大的并且结尾小于a[i]
            c[j]=a[i]; //  ………………………………6
            b[i]=j; // ……………………………………7
        }
         for(max=i=0;i<n;i++) // ………………………………8
             if(b[i]>max)
                max=b[i];
        cout<<max<<endl;
    }
     return 0;
}

对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
    loop invariant: 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
                           2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序

                                  列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
                           3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
    initialization:    1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
                           2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1

                                 的递增了序列只有一个,c[1]也是最小的;
                           3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
    maintenance:   1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由

                                c进入循环前单调递增及find函数的性质可知(见find的注释),

                                 此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]>c[j-1]的性质仍然成

                                立,即c仍然是单调递增的;
                           2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变

                                  小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当

                                 然此时c[j]的值仍是最小的;
                           3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值

                                为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的

                               长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
    termination:       循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递

                              增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。

          仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。

二分查找可以参考:http://blog.csdn.net/sunmenggmail/article/details/7540970

#include <iostream>
using namespace std;
int find(int *a,int len,int n)//修改后的二分查找,若返回值为x,则a[x]>=n
{
    int left=0,right=len,mid=(left+right)/2;
    while(left<=right)
    {
        if(n>a[mid]) left=mid+1;
        else if(n<a[mid]) right=mid-1;
        else return mid;
        mid=(left+right)/2;
    }
    return left;
}
int main()
{
    int n,a[100],c[100],i,j,len;//新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标
    while(cin>>n)
    {
        for(i=0;i<n;i++)
            cin>>a[i];
        b[0]=1;
        c[0]=-1;
        c[1]=a[0];
        len=1;//此时只有c[1]求出来,最长递增子序列的长度为1.
        for(i=1;i<n;i++)
        {
            j=find(c,len,a[i]);
            c[j]=a[i];
            if(j>len)//要更新len,另外补充一点:由二分查找可知j只可能比len大1
                len=j;//更新len
        }
        cout<<len<<endl;
    }
    return 0;
}


你可能感兴趣的:(c,算法,存储,ini,initialization)