转自:http://www.slyar.com/blog/poj-2533-cpp.html
属于简单的经典的DP,求最长上升子序列(LIS)。先研究了O(n^2)的思路。
令A[i]表示输入第i个元素,D[i]表示从A[1]到A[i]中以A[i]结尾的最长子序列长度。对于任意的0 < j <= i-1,如果A(j) < A(i),则A(i)可以接在A(j)后面形成一个以A(i)结尾的新的最长上升子序列。对于所有的 0 < j <= i-1,我们需要找出其中的最大值。
DP状态转移方程:
D[i] = max{1, D[j] + 1} (j = 1, 2, 3, ..., i-1 且 A[j] < A[i])
解释一下这个方程,i, j在范围内:
如果 A[j] < A[i] ,则D[i] = D[j] + 1
如果 A[j] >= A[i] ,则D[i] = 1
#include <iostream> #define SIZE 1001 using namespace std; int main() { int i, j, n, max; /* a[i]表示输入第i个元素 */ int a[SIZE]; /* d[i]表示以a[i]结尾的最长子序列长度 */ int d[SIZE]; cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } max = 0; for (i = 1; i <= n; i++) { d[i] = 1; for (j = 1; j <= i - 1; j++) { if (a[j] < a[i] && d[i] < d[j] + 1) { d[i] = d[j] + 1; } } /* 记录最长子序列 */ if (d[i] > max) max = d[i]; } cout << max << endl; //system("pause"); return 0; }
还有一个O(nlogn)的算法:
这个算法其实已经不是DP了,有点像贪心。至于复杂度降低其实是因为这个算法里面用到了二分搜索。本来有N个数要处理是O(n),每次计算要查找N次还是O(n),一共就是O(n^2);现在搜索换成了O(logn)的二分搜索,总的复杂度就变为O(nlogn)了。
这个算法的具体操作如下(by RyanWang):
开一个栈,每次取栈顶元素top和读到的元素temp做比较,如果temp > top 则将temp入栈;如果temp < top则二分查找栈中的比temp大的第1个数,并用temp替换它。 最长序列长度即为栈的大小top。
这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x],用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。
举例:原序列为1,5,8,3,6,7
栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。但是这个代码只能求出长度,并不能求出具体的序列
双端LIS:http://blog.csdn.net/v_JULY_v/article/details/6419466
也是基于这个算法,但是记录了每个i对应的最长上升序列的长度
用该算法完成POJ2533的具体代码如下:
#include <iostream> #define SIZE 1001 using namespace std; int main() { int i, j, n, top, temp; int stack[SIZE]; cin >> n; top = 0; /* 第一个元素可能为0 */ stack[0] = -1; for (i = 0; i < n; i++) { cin >> temp; /* 比栈顶元素大数就入栈 */ if (temp > stack[top]) { stack[++top] = temp; } else { int low = 1, high = top; int mid; /* 二分检索栈中比temp大的第一个数 */ while(low <= high) { mid = (low + high) / 2; if (temp > stack[mid])// { low = mid + 1; } else { high = mid - 1; } } /* 用temp替换 */ stack[low] = temp; } } /* 最长序列数就是栈的大小 */ cout << top << endl; //system("pause"); return 0; }
对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
loop invariant: 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序
列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
initialization: 1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1
的递增了序列只有一个,c[1]也是最小的;
3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
maintenance: 1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由
c进入循环前单调递增及find函数的性质可知(见find的注释),
此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]>c[j-1]的性质仍然成
立,即c仍然是单调递增的;
2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变
小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当
然此时c[j]的值仍是最小的;
3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值
为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的
长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
termination: 循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递
增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。
仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。
二分查找可以参考:http://blog.csdn.net/sunmenggmail/article/details/7540970