sk_buff 剖析

 

基于内核版本2.6.37

本文主要剖析:sk_buff结构体、sk_buff操作函数、各协议层对其处理

 

主要源文件:linux-2.6.37/ include/ linux/ skbuff.h

                        linux-2.6.37/ include/ linux/ skbuff.c

 

==================================================================================================

 一些相关数据结构

在include/linux/ktime.h中,
union ktime {
        s64 tv64 ;
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
        struct {
# ifdef __BIG_ENDIAN
        s32 sec , nsec ;
#else
        s32 nsec , sec ;
#endif
        } tv ;
#endif
} ;

typedef union ktime ktime_t ;
 
 struct sk_buff_head {
 /* These two members must be first. */
        struct sk_buff *next;
        struct sk_buff *prev; 
        __u32  qlen;
        spinlock_t lock;
};
 
/* 关于sk_buff_data_t */
# if BITS_PER_LONG > 32
# define NET_SKBUFF_DATA_USES_OFFSET 1
# endif

# ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t ;
# else 
typedef unsigned char *sk_buff_data_t ;
#endif


 ==================================================================================================

sk_buff结构体

/* struct sk_buff - socket buffer */
struct sk_buff {
        /* These two members must be first */
        struct sk_buff *next ; /* Next buffer in list */
        struct sk_buff *prev ; /* Previous buffer in list */

        ktime_t tstamp ; /* Time we arrived,记录接收或发送报文的时间戳*/

        struct sock *sk ; /* Socket we are owned by */

        /* Device we arrived on / are leaving by
         * 通过该设备接收或发送,记录网络接口的信息和完成操作
          */
        struct net_device *dev ;

        /* This is the control buffer. It is free to use for every
         * layer. Please put your private variables there.
         */
        char cb[48] __aligned (8) ;
        ...
        /* data_len为分页数据所包含的全部报文长度
          * len为某时刻的报文总长度
          * 那么,线性数据的长度为:skb->len - skb->data_len
        */
        unsigned int len , data_len ;

        /* 保存了下一个协议层的信息,在处理报文时由当前协议层设置 */
        __be16 protocol ; 
        ...
        /* head指向线性数据区的开始
         * data指向驻留线性数据区中数据的起始位置
         */
        unsigned char *head , *data ;
        ...
        /* 协议头表示 */
        sk_buff_data_t  transport_header ; /* 传输层协议头 */
        sk_buff_data_t  network_header ; /* 网络层协议头 */
        sk_buff_data_t  mac_header ; /* 链路层协议头 */

        sk_buff_data_t tail ; /* 指向驻留在线性数据区的最后一字节数据*/
        sk_buff_data_end ; /* 指向线性数据区的结尾,确保不超出可用存储缓冲区 */
        atomic_t users ; /* 引用该sk_buff的数量*/

        /* 该缓冲区所分配的总内存,包括sk_buff结构大小 + 数据块大小 (应该不包括分页大小?)*/
        unsigned int truesize ;
}

/* This data is invariant across clones and lives at 
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
        /* number of fragments belonged to this sk_buff 
         * 此sk_buff分页段的数目,它表示frags[]数组的元素数量,该数组包含sk_buff的分页数据
          */
        unsigned short nr_frags; 

        ...

        /* 指向其分段列表,此sk_buff的总长度为frag_list链表中每个分段长度(skb->len)的和,
          * 再加上原始的sk_buff的长度
          * 通过此域可进行报文分段!!
          */
        struct sk_buff *frag_list ;

        /* 
         * Warning : all fields before dataref are cleared in __alloc_skb()
         * 此sk_buff被引用的次数
          */
        atomic_t dataref ;

        /* 
         * must be last field
         * 分段的数组,包含sk_buff的分页数据
          */
         skb_frag_t frags[MAX_SKB_FRAGS] ;
}

/* To allow 64K frame to be packed as single skb without frag_list 
 * 允许小于64K的数据不用分段,即不适用frag_list
 */
#define MAX_SKB_FRAGS (65536 / PAGE_SIZE + 2 )

typedef struct skb_frag_struct skb_frag_t ;
struct skb_frag_struct {
        struct page *page ; /* 该页的虚拟地可用page_address()得到*/

#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
        __u32 page_offset ;
        __u32 size;
#else
        __u16 page_offset ;
        __u16 size ;
#endif
};

 

注意:分段和分页是两个不同的概念。

分页,即使用非线性数据区,非线性区的含义是包含在sk_buff中的数据长度超过了线性数据区

所能容纳的界限(一般为一页)。包含在非线性数据区中的数据是sk_buff结构中end域所指数据

的连续,全部数据的总长度包含在线性和非线性数据区中。

sk_buff数据的总长度存储在len域,非线性数据的长度存储在sk_buff的data_len域。

分页的实现:

在skb_shared_info中,skb_frag_t frags[MAX_SKB_FRAGS]

通过分页,使得一个sk_buff最多能存:64K的数据(非线性区)+ 一页数据(线性区)。

 

当DMA支持物理分散页的分散-聚集操作时,才有可能存在分页数据区。如果支持,就为线性数据区

分配一页的数据,其他数据则保存在分页数据区中,随后数据的每个sk_buff分段都会分配一页的数据。

如果不支持,就尝试在线性数据区为整个sk_buff数据分配连续的物理内存。

 

分段,主要指IP分段的实现。当一个数据报过大时,需要分为多个。即一个sk_buff分为多个

sk_buff,这些sk_buff形成一个链表。

分段的实现:

在skb_shared_info中,struct sk_buff *frag_list

通过frag_list可以遍历分段列表。

 

======================================================================================================

sk_buff的操作

 

1. alloc_skb

static inline struct sk_buff *alloc_skb( unsigned int size ,
                                        gfp_t priority)
{
        return __alloc_skb(size , priority , 0 , NUMA_NO_NONE) ;
}


 

size是数据包的大小。

The returned buffer has no headroom and a tail room of size bytes.

 

2. skb_reserve

用来为协议头预留空间。拓展head room。

/**
 * skb_reserve - ajust headroom
 * @skb : buffer to alter
 * @len : bytes to move
 *
 * Increase the headroom of an empty &sk_buff by reducing the tail
 * room. This is only allowed for an empty buffer.
 */

static inline void skb_reserve( struct sk_buff *skb , int len )
{
        skb->data += len ; 
        skb->tail += len ;
}


 

此时,head room 大小为len,data room 大小0,tail room大小为原长 - len。

当构造一个报文时,要为协议头预留最大可能的空间。

如,MAX_TCP_HEADER = MAX_TCP_HEADER + MAX_IP_HEADER + LL_MAX_HEADER

 

3. skb_put

用来拓展data room。当要向data room增加数据时,先增加data room的可使用空间。

/**
 * skb_put - add data to a buffer
 * @skb : buffer to use
 * @len : amount of data to add
 *
 * This function extends the used data area of the buffer. If this would 
 * exceed the total buffer size the kernel will panic. A pointer to the
 * first byte of the extra data is returned.
 */

unsigned char *skb_put( struct sk_buff *skb , unsigned int len )
{
        unsigned char *tmp = skb_tail_pointer(skb) ;
        /* 如果存在非线性区,即data_len > 0 ,则报bug */
        SKB_LINEAR_ASSERT(skb) ;
        skb->tail += len ;
        skb->len += len ;
        if (unlikely(skb->tail > skb->end ))
                skb_over_panic(skb , len , __builtin_return_address(0)) ;
        return tmp ;
}

 

4. skb_push

用来拓展data room。和skb_put不同的是,它不是向tail room扩展,而是向head room扩展。

/**
 * skb_push - add data to the start of a buffer
 * @skb : buffer to use
 * @len : amount of data to add
 *
 * This function extends the used data area of the buffer at the buffer
 * start. If this would exceed the total buffer headroom the kernel will
 * panic. A pointer to the first byte of the extra data is returned.
 */

unsigned char *skb_push( struct sk_buff *skb , unsigned int len )
{
        skb->data -= len ;
        skb->len += len ;
        if ( unlikely(skb->data < skb->head ) )
                skb_under_panic(skb , len , __builtin_return_address(0)) ;
        return skb->data ;
}

 

注意

发送报文一般要调用alloc_skb、skb_reserve、skb_put、skb_push。

发送报文时,在不同协议层处理数据时,该数据要添加相应的协议头。

因此,最高层添加数据和自身的协议头。alloc_skb用来申请一个sk_buff。

skb_reserve用来创建头空间。skb_put用来创建用户数据空间,用户数据复制到sk->data

指向的数据区。接下来是在用户数据的前面加上协议头,使用skb_push。

 

5. skb_pull

在报文到达时访问协议头,接收报文时调用。使head room向data room扩展。

/**
 * skb_pull - remove data from the start of a buffer
 * @skb : buffer to use
 * @len : amount of data to remove
 *
 * This function removes data from the start of a buffer, returning the memory to
 * the headroom. A pointer to the next data in the buffer is returned. Once the
 * data has been pulled future pushes will overwrite the old data.
 */

unsigned char *skb_pull( struct sk_buff *skb , unsigned int len )
{
        return skb_pull_inline(skb , len ) ;
}

static inline unsigned char *skb_pull_inline(struct sk_buff *skb , unsigned int len)
{
        return unlikely(len > skb->len ) ? NULL : __skb_pull(skb , len) ;
}

static inline unsigned char *__skb_pull(struct sk_buff *skb , unsigned int len)
{
        skb->len -= len ;
        BUG_ON(skb->len < skb->data_len ) ;
        return skb->data += len ;
}

 

====================================================================================================

 

# ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_transport_header(const struct sk_buff skb)
{
        return skb->head + skb->transport_header ;
}

static inline void skb_reset_transport_header(struct sk_buff *skb)
{
        skb->transport_header = skb->data - skb->head ;
}
# else 

static inline unsigned char *skb_transport_header(const struct sk_buff skb)
{
        return skb->transport_header ;
}

static inline void skb_reset_transport_header(struct sk_buff *skb)
{
        skb->transport_header = skb->data ;
}
 
static inline struct tcphdr *tcp_hdr(const struct sk_buff *skb)
{
        return (struct tcphdr *) skb_transport_header(skb) ;
}

 

sk_buff中tcp协议头的表示:

sk_buff_data_t transport_header ;

用函数tcp_hdr(skb)来获取。

当tcp协议头地址有变化时,用skb_reset_transport_header(skb)来更新transport_header。

===============================================================================================

 

向下遍历协议层(即发送数据包)时,构建协议头

 

1. 添加TCP头

TCP调用tcp_transmit_skb()来为TCP数据段构建一个TCP头。

首先计算TCP头的长度,要考虑当前TCP连接所使用的选项。一旦完成该操作,就需要调用

skb_push()来为TCP头分配空间。

/* This routine actually transmit TCP packets queued in by tcp_do_sendmsg(). 
 * This is used by both the initial transmission and possible later retransmissions.
 * All SKB's seen here are completely headerless. It is our job to build the TCP
 * header, and pass the packet down to IP so it can do the same plus pass the
 * packet off to the device.
 *
 * We are working here with either a clone of the original SKB, or a fresh unique
 * copy made by the retransmit engine.
 */

static int tcp_transmit_skb(struct sock *sk , struct sk_buff *skb , int clone_it ,
                               gfp_t gfp_mask)
{
        ...
        struct inet_sock *inet = inet_sk(sk) ;
        unsigned tcp_option_size, tcp_header_size ;
        struct tcphdr *th ;
        ...
        tcp_header_size = tcp_option_size + sizeof(struct tcphdr) ;
        ...
        skb_push(skb , tcp_header_size) ;
        skb_reset_transport_header(skb) ;
        ...
        /* Build TCP header and checksum it. */
        th = tcp_hdr(skb) ;
        th->source = inet->inet_sport ;
        th->dest = inet->inet_dport ;
        ...
}

 

 

2. 添加IP头

ip_build_and_send_pkt()构造报文的IP头,并发送给链路层。

/*
 * Add an ip header to a sk_buff and sent it out.
 */
int ip_build_and_sent_pkt(struct sk_buff *skb , struct sock *sk ,
                     __be32 saddr , __be32 daddr , struct ip_options *opt) 
{
        struct inet_sock *inet = inet_sk(sk) ;
        ...
        struct iphdr *iph ;
        /* Build the IP header. */
        skb_push(skb , sizeof(struct iphdr) + (opt ? opt->optlen : 0) ) ;
        skb_reset_network_header(skb) ;
        iph = ip_hdr(skb) ;
        iph->version = 4 ;
        iph->ihl = 5 ;
        iph->tos = inet->tos ;
        ...
}

 

 

3. 添加链路层头

eth_header构造以太网帧协议头。

#define ETH_HLEN 14
/**
 * eth_header - create the Ethernet header
 * @skb : buffer to alter
 * @dev : source device
 * @type : Ethernet type field
 * @daddr : destination address
 * @saddr : source address
 * @len : packet length (<= skb->len)
 *
 * Set the protocal type. For a packet of type ETH_P_802_3/2 we put 
 * the length in here instead.
 */
int eth_header(struct sk_buff *skb , struct net_device *dev ,
                unsigned short type , const void *daddr , const void *saddr,
                unsigned len)
{
        struct ethhdr *eth = (struct ethhdr *) skb_push(skb , ETH_HLEN) ;
        ...
}

 

 

=======================================================================================================

 

向上遍历协议层(接收数据包)时,解析协议头

 

1. 解析以太网头

当新报文到达时,要为新报文分配一个新的sk_buff,其大小等于报文的长度。sk_buff

的data域指向报文的起始位置(以太网头)。使用skb_pull来提取不同的协议层头。

该例程在sk_buff到IP backlog队列排队之前完成。

/**
 * eth_type_trans - determine the packet's protocol ID.
 * @skb : received socket data
 * @dev : receiving network device
 *
 * The rule here is that we
 * assume 802.3 if the type field is short enough to be a length.
 * This is normal practice and works for any 'now in use' protocol.
 */
__be16 eth_type_trans(struct sk_buff *skb , struct net_device *dev )
{
        struct ethhdr *eth ;
        skb->dev = dev ;
        skb_reset_mac_header(skb) ; /* 更新mac_header */
        skb_pull_inline(skb , ETH_HLEN) ; /* 此后data指向IP头 */
        eth = eth_hdr(skb) ;
        ...
}

 

2. 解析IP头

现在sk_buff处于IP backlog队列中,由netif_receive_skb()负责处理,该函数将sk_buff

从backlog队列中取出。

netif_receive_skb() 接收数据包得主要处理函数。

/**
 * netif_receive_skb - process receive buffer from network
 * @skb : buffer to process
 * netif_receive_skb() is the main receive data processing function.
 * It always succeeds. The buffer may be dropped during processing
 * for congestion control or by the protocol layers.
 *
 * This function may only be called from softirq context and interrupts
 * should be enabled.
 * 
 * Return values (usually ignored) :
 * NET_RX_SUCCESS : no congestion
 * NET_RX_DROP : packet was dropped
 */

int netif_receive_skb(struct sk_buff *skb)


 

3. 解析tcp头

网络层处理完报文,在将data指针指向传输层起始位置,并更新transport_header后,

将报文递给传输层,这些工作有ip_local_deliver_finish()来完成。

static int ip_local_deliver_finish(struct sk_buff *skb)
{
        ...
        __skb_pull(skb , ip_hdrlen(skb)) ;
        skb_reset_transport_header(skb) ;
        ...
}

static inline unsigned int ip_hdrlen(const struct sk_buff *skb)
{
        return ip_hdr(skb)->ihl * 4 ;
}

 

 

传输层调用tcp_v4_do_rcv()处理传输层头报文。如果连接已建立,并且TCP报文中有数据,

就调用skb_copy_datagram_iovec()将从skb->data偏移tcp_header_len开始的数据复制给

用户应用程序。如果由于某些原因不能复制数据给用户应用程序,就将sk_buff的data指针

向前移动tcp_header_len,再将其发往套接字的接受队列排队。

你可能感兴趣的:(struct,tcp,list,header,buffer)