yum install mysql
yum install mysql-server
my.cnf(/etc/my.cnf)的[mysqld]区段下增加: lower_case_table_names=1
service mysqld start
mysqladmin -u root password 110110
mysql -u root;
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '110110' WITH GRANT OPTION;
flush privileges;
chmod 777 ./* 在bin目录下
./startup_nowrap.sh
<dataHost name="localhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100"> <heartbeat>select user()</heartbeat> <!-- can have multi write hosts --> <writeHost host="hostM1" url="10.97.190.27:3306" user="qidian" password="qidian"> <!-- can have multi read hosts --> </writeHost> <!-- <writeHost host="hostS1" url="localhost:3316" user="root" password="123456" /> <writeHost host="hostM2" url="localhost:3316" user="root" password="123456"/> --> </dataHost>
链接自己的mysql服务器
mysql -utest -ptest -h127.0.0.1 -P9066
show @@help
其中reload配置文件需要reload @@config_all,类似于nginx的reload
conf/server.xml 存储mycat的账户,和mysql账户没有关系
conf/schema.xml 逻辑表
mysql -utest -ptest -h127.0.0.1 -P8066 -DTESTDB
<table name="company" primaryKey="ID" type="global" dataNode="dn1,dn2,dn3" />
每行记录在每个分片上同时存在
schema.xml
<table name="employee" primaryKey="ID" dataNode="dn1,dn2" rule="sharding-by-intfile" />
rule.xml
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int"
class="org.opencloudb.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
</function>
partition-hash-int.txt
10000=0
10010=1
DEFAULT_NODE=1
如果你输入
insert into employee(id,name,sharding_id) values(4, 'mydog',10011);则出错因为分片策略没有枚举10011的分片位置
上面columns 标识将要分片的表字段,algorithm 分片函数, 其中分片函数配置中,mapFile标识配置文件名称,type默认值为0,0表示Integer,非零表示String, 所有的节点配置都是从0开始,及0代表节点1 /** * defaultNode 默认节点:小于0表示不设置默认节点,大于等于0表示设置默认节点 * 默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点 * 如果不配置默认节点(defaultNode值小于0表示不配置默认节点),碰到 * 不识别的枚举值就会报错, * like this:can't find datanode for sharding column:column_name val:ffffffff */
<table name="customer" primaryKey="ID" dataNode="dn1,dn2" rule="sharding-by-intfile"> <childTable name="orders" primaryKey="ID" joinKey="customer_id" parentKey="id"> <childTable name="order_items" joinKey="order_id" parentKey="id" /> </childTable> <childTable name="customer_addr" primaryKey="ID" joinKey="customer_id" parentKey="id" /> </table>
explain create table customer(id int not null primary key,name varchar(100),company_id int not null,sharding_id int not null); explain insert into customer (id,name,company_id,sharding_id )values(1,'wang',1,10000); explain insert into customer (id,name,company_id,sharding_id )values(2,'xue',2,10010); explain insert into customer (id,name,company_id,sharding_id )values(3,'feng',3,10000); explain Select * from customer; create table orders (id int not null primary key ,customer_id int not null,sataus int ,note varchar(100) ); insert into orders(id,customer_id) values(1,1); //stored in db1 because customer table with id=1 stored in db1 insert into orders(id,customer_id) values(2,2); //stored in db2 because customer table with id=1 stored in db2 explain insert into orders(id,customer_id) values(2,2); select customer.name ,orders.* from customer ,orders where customer.id=orders.customer_id;
<table name="travelrecord" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" /> <tableRule name="auto-sharding-long"> <rule> <columns>id</columns> <algorithm>rang-long</algorithm> </rule> </tableRule> <function name="rang-long" class="org.opencloudb.route.function.AutoPartitionByLong"> <property name="mapFile">autopartition-long.txt</property> </function> # range start-end ,data node index # K=1000,M=10000. 0-500M=0 500M-1000M=1 1000M-1500M=2
<tableRule name="rule1"> <rule> <columns>user_id</columns> <algorithm>func1</algorithm> </rule> </tableRule> <function name="func1" class="org.opencloudb.route.function.PartitionByLong"> <property name="partitionCount">2,1</property> <property name="partitionLength">256,512</property> </function> 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数, partitionCount 分片个数列表,partitionLength 分片范围列表 分区长度:默认为最大2^n=1024 ,即最大支持1024分区 约束 : count,length两个数组的长度必须是一致的。 1024 = sum((count[i]*length[i])). count和length两个向量的点积恒等于1024 用法例子: 本例的分区策略:希望将数据水平分成3份,前两份各占25%,第三份占50%。(故本例非均匀分区) // |<---------------------1024------------------------>| // |<----256--->|<----256--->|<----------512---------->| // | partition0 | partition1 | partition2 | // | 共2份,故count[0]=2 | 共1份,故count[1]=1 | int[] count = new int[] { 2, 1 }; int[] length = new int[] { 256, 512 }; PartitionUtil pu = new PartitionUtil(count, length); // 下面代码演示分别以offerId字段或memberId字段根据上述分区策略拆分的分配结果 int DEFAULT_STR_HEAD_LEN = 8; // cobar默认会配置为此值 long offerId = 12345; String memberId = "qiushuo"; // 若根据offerId分配,partNo1将等于0,即按照上述分区策略,offerId为12345时将会被分配到partition0中 int partNo1 = pu.partition(offerId); // 若根据memberId分配,partNo2将等于2,即按照上述分区策略,memberId为qiushuo时将会被分到partition2中 int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN); 如果需要平均分配设置:平均分为4分片,partitionCount*partitionLength=1024 <function name="func1" class="org.opencloudb.route.function.PartitionByLong"> <property name="partitionCount">4</property> <property name="partitionLength">256</property> </function>
6:求模法
<tableRule name="mod-long"> <rule> <columns>user_id</columns> <algorithm>mod-long</algorithm> </rule> </tableRule> <function name="mod-long" class="org.opencloudb.route.function.PartitionByMod"> <!-- how many data nodes --> <property name="count">3</property> </function> 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数, 此种配置非常明确即根据id进行十进制求模预算,相比方式1,此种在批量插入时需要切换数据源,id不连续
<tableRule name="sharding-by-date"> <rule> <columns>create_time</columns> <algorithm>sharding-by-date</algorithm> </rule> </tableRule> <function name="sharding-by-date" class="org.opencloudb.route.function.PartitionByDate"> <property name="dateFormat">yyyy-MM-dd</property> <property name="sBeginDate">2014-01-01</property> <property name="sPartionDay">10</property> </function> 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数, 配置中配置了开始日期,分区天数,即默认从开始日期算起,分隔10天一个分区 Assert.assertEquals(true, 0 == partition.calculate("2014-01-01")); Assert.assertEquals(true, 0 == partition.calculate("2014-01-10")); Assert.assertEquals(true, 1 == partition.calculate("2014-01-11")); Assert.assertEquals(true, 12 == partition.calculate("2014-05-01"));
<tableRule name="sharding-by-pattern"> <rule> <columns>user_id</columns> <algorithm>sharding-by-pattern</algorithm> </rule> </tableRule> <function name="sharding-by-pattern" class="org.opencloudb.route.function.PartitionByPattern"> <property name="patternValue">256</property> <property name="defaultNode">2</property> <property name="mapFile">partition-pattern.txt</property> </function> partition-pattern.txt # id partition range start-end ,data node index ###### first host configuration 1-32=0 33-64=1 65-96=2 97-128=3 ######## second host configuration 129-160=4 161-192=5 193-224=6 225-256=7 0-0=7 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果配置了默认,则不会按照求模运算 mapFile 配置文件路径 配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推,如果id非数据,则会分配在defaoultNode 默认节点 String idVal = "0"; Assert.assertEquals(true, 7 == autoPartition.calculate(idVal)); idVal = "45a"; Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
<tableRule name="sharding-by-prefixpattern"> <rule> <columns>user_id</columns> <algorithm>sharding-by-prefixpattern</algorithm> </rule> </tableRule> <function name="sharding-by-pattern" class="org.opencloudb.route.function.PartitionByPattern"> <property name="patternValue">256</property> <property name="prefixLength">5</property> <property name="mapFile">partition-pattern.txt</property> </function> partition-pattern.txt # range start-end ,data node index # ASCII # 48-57=0-9 # 64、65-90=@、A-Z # 97-122=a-z ###### first host configuration 1-4=0 5-8=1 9-12=2 13-16=3 ###### second host configuration 17-20=4 21-24=5 25-28=6 29-32=7 0-0=7 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数 mapFile 配置文件路径 配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推 此种方式类似方式6只不过采取的是将列种获取前prefixLength位列所有ASCII码的和进行求模sum%patternValue ,获取的值,在通配范围内的 即 分片数, /** * ASCII编码: * 48-57=0-9阿拉伯数字 * 64、65-90=@、A-Z * 97-122=a-z * */ 如 String idVal="gf89f9a"; Assert.assertEquals(true, 0==autoPartition.calculate(idVal)); idVal="8df99a"; Assert.assertEquals(true, 4==autoPartition.calculate(idVal)); idVal="8dhdf99a"; Assert.assertEquals(true, 3==autoPartition.calculate(idVal));
<tableRule name="sharding-by-substring"> <rule> <columns>user_id</columns> <algorithm>sharding-by-substring</algorithm> </rule> </tableRule> <function name="sharding-by-substring" class="org.opencloudb.route.function.PartitionDirectBySubString"> <property name="startIndex">0</property> <!-- zero-based --> <property name="size">2</property> <property name="partitionCount">8</property> <property name="defaultPartition">0</property> </function> 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数 此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。 例如id=05-100000002 在此配置中代表根据id中从startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没传默认分配到defaultPartition
<tableRule name="sharding-by-stringhash"> <rule> <columns>user_id</columns> <algorithm>sharding-by-stringhash</algorithm> </rule> </tableRule> <function name="sharding-by-substring" class="org.opencloudb.route.function.PartitionDirectBySubString"> <property name=length>512</property> <!-- zero-based --> <property name="count">2</property> <property name="hashSlice">0:2</property> </function> 配置说明: 上面columns 标识将要分片的表字段,algorithm 分片函数 函数中length代表字符串hash求模基数,count分区数,hashSlice hash预算位 即根据子字符串 hash运算 hashSlice : 0 means str.length(), -1 means str.length()-1 /** * "2" -> (0,2)<br/> * "1:2" -> (1,2)<br/> * "1:" -> (1,0)<br/> * "-1:" -> (-1,0)<br/> * ":-1" -> (0,-1)<br/> * ":" -> (0,0)<br/> */ 例子: String idVal=null; rule.setPartitionLength("512"); rule.setPartitionCount("2"); rule.init(); rule.setHashSlice("0:2"); // idVal = "0"; // Assert.assertEquals(true, 0 == rule.calculate(idVal)); // idVal = "45a"; // Assert.assertEquals(true, 1 == rule.calculate(idVal)); //last 4 rule = new PartitionByString(); rule.setPartitionLength("512"); rule.setPartitionCount("2"); rule.init(); //last 4 characters rule.setHashSlice("-4:0"); idVal = "aaaabbb0000"; Assert.assertEquals(true, 0 == rule.calculate(idVal)); idVal = "aaaabbb2359"; Assert.assertEquals(true, 0 == rule.calculate(idVal));
<tableRule name="sharding-by-murmur"> <rule> <columns>user_id</columns> <algorithm>murmur</algorithm> </rule> </tableRule> <function name="murmur" class="org.opencloudb.route.function.PartitionByMurmurHash"> <property name="seed">0</property><!-- 默认是0--> <property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片--> <property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍--> <!-- <property name="weightMapFile">weightMapFile</property> 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 --> <!-- <property name="bucketMapPath">/etc/mycat/bucketMapPath</property> 用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 --> </function> 一致性hash预算有效解决了分布式数据的扩容问题,前1-9中id规则都多少存在数据扩容难题,而10规则解决了数据扩容难点