akka cluster sharding source code 学习 (2/5) handle off

一旦 shard coordinator(相当于分布式系统的 zookeeper) 启动,它就会启动一个定时器,每隔一定的时间尝试平衡一下集群中各个节点的负载,平衡的办法是把那些负载较重的 actor 移动到负载较轻的节点上。在这一点上,我以前的理解有误,我以为 shardRegion 是移动的最小单位。

val rebalanceTask = context.system.scheduler.schedule(rebalanceInterval, rebalanceInterval, self, RebalanceTick)

 当 coordinator 收到 ReblanceTick 后,就开始尝试平衡系统负载

case RebalanceTick ⇒
      if (persistentState.regions.nonEmpty) {
        val shardsFuture = allocationStrategy.rebalance(persistentState.regions, rebalanceInProgress)
        shardsFuture.value match {
          case Some(Success(shards)) ⇒
            continueRebalance(shards)
          case _ ⇒
            // continue when future is completed
            shardsFuture.map { shards ⇒ RebalanceResult(shards)
            }.recover {
              case _ ⇒ RebalanceResult(Set.empty)
            }.pipeTo(self)
        }
      }

 

上面的逻辑我看懂了,但是 Future 的用法没看明白。按照一般的写法,当 shardsFuture 返回 Failure 以后,应该直接执行 RebalanceResut(Set.empty).pipeTo(self),不知道为什么失败以后还要尝试等待 Future

allocationStrategy 提供了默认的实现,也可以自定义负载均衡策略。rebalance 函数返回的是 Set(ShardId),即那些要被移动的 shards

 

当 coordinator 收到 RebalanceResult 后,开始 启动 balance 逻辑

def continueRebalance(shards: Set[ShardId]): Unit =
    shards.foreach { shard ⇒
      if (!rebalanceInProgress(shard)) {
        persistentState.shards.get(shard) match {
          case Some(rebalanceFromRegion) ⇒
            rebalanceInProgress += shard
            log.debug("Rebalance shard [{}] from [{}]", shard, rebalanceFromRegion)
            context.actorOf(rebalanceWorkerProps(shard, rebalanceFromRegion, handOffTimeout,
              persistentState.regions.keySet ++ persistentState.regionProxies)
              .withDispatcher(context.props.dispatcher))
          case None ⇒
            log.debug("Rebalance of non-existing shard [{}] is ignored", shard)
        }

      }
    }

 

rebalanceInProcess 是一个 Set,记录正在被移动的 shard,我想,在新一轮 balance 开始时, rebalanceInProcess 为空的情况只会发生在上次 balance 还没有做完。不知道这个时候,是应该报错还是继续 balance 更好,因为 balanceStrategy 应该不会考虑吧到 上一轮 balance 还没做完这种可能性。

然后, coordinator 启动 rebalanceWorker,也就是上篇提到的替身 actor。

 

private[akka] class RebalanceWorker(shard: String, from: ActorRef, handOffTimeout: FiniteDuration,
                                      regions: Set[ActorRef]) extends Actor {
    import Internal._
    regions.foreach(_ ! BeginHandOff(shard))
    var remaining = regions

    import context.dispatcher
    context.system.scheduler.scheduleOnce(handOffTimeout, self, ReceiveTimeout)

    def receive = {
      case BeginHandOffAck(`shard`) ⇒
        remaining -= sender()
        if (remaining.isEmpty) {
          from ! HandOff(shard)
          context.become(stoppingShard, discardOld = true)
        }
      case ReceiveTimeout ⇒ done(ok = false)
    }

    def stoppingShard: Receive = {
      case ShardStopped(shard) ⇒ done(ok = true)
      case ReceiveTimeout      ⇒ done(ok = false)
    }

    def done(ok: Boolean): Unit = {
      context.parent ! RebalanceDone(shard, ok)
      context.stop(self)
    }
  }

akka 的逻辑是基于消息传递的,这种代码其实是很难去读的。在 rebalanceWorker 运行时,牵扯到很多个 actor。首先是,coordinator,其次是 shardRegion,也就是 host 待迁移 shard actor 的那个 region,然后是 shard actor 本身,最后是系统里所有的 shardRegion,他们也要参与进来。写到这里,我不禁把电脑屏幕竖了起来。

 

1. RebalanceWorker 首先给所有的 ShardRegion BeginHandOff 消息,告诉大家,hand off 开始,然后等待大家的回复

2. ShardRegion 收到 BeginHandOff 后,开始更新自己的知识库,将 HostShardRegion 和 shardActor 的记忆从自己的知识库中抹去

case BeginHandOff(shard) ⇒
      log.debug("BeginHandOff shard [{}]", shard)
      if (regionByShard.contains(shard)) {
        val regionRef = regionByShard(shard)
        val updatedShards = regions(regionRef) - shard
        if (updatedShards.isEmpty) regions -= regionRef
        else regions = regions.updated(regionRef, updatedShards)
        regionByShard -= shard
      }
      sender() ! BeginHandOffAck(shard)

 最后,发送 BeginHandOffAck 消息,告诉 rebalanceWorker 自己准备完毕(这些 shardRegion 以后也没事干了)

3. 继续回到 rebalanceWorker,它发送 HandOff 告诉 Host shard actor 的 ShardRegion,你可以做自己的清理工作了。然后将自己的状态设置成 stoppingShard,等待 ShardStopped 消息,这个消息的来源有两个,一个是 HostShardRegion,另外一个是 shard actor

4. HostShardRegion 收到 HandOff 消息后

case msg @ HandOff(shard) ⇒
      log.debug("HandOff shard [{}]", shard)

      // must drop requests that came in between the BeginHandOff and now,
      // because they might be forwarded from other regions and there
      // is a risk or message re-ordering otherwise
      if (shardBuffers.contains(shard)) {
        shardBuffers -= shard
        loggedFullBufferWarning = false
      }

      if (shards.contains(shard)) {
        handingOff += shards(shard)
        shards(shard) forward msg
      } else
        sender() ! ShardStopped(shard)

 如果 HostShardRegion 已经不再含有 shard actor,那么直接返回 ShardStopped,否则 HandOff 这个 Set 加入 shard actor,并将 HandOff 传给 shard actor

5. 又看了一遍代码,发现 shard actor 和 entity actor 又是两种东西,shard actor 存在于 entity actor 和 shard region 之间

目前还不知道 entity actor 和 shard region 之间的关系

def getEntity(id: EntityId): ActorRef = {
    val name = URLEncoder.encode(id, "utf-8")
    context.child(name).getOrElse {
      log.debug("Starting entity [{}] in shard [{}]", id, shardId)

      val a = context.watch(context.actorOf(entityProps, name))
      idByRef = idByRef.updated(a, id)
      refById = refById.updated(id, a)
      state = state.copy(state.entities + id)
      a
    }
  }

 

从这段代码来看, shard actor 与 entity actor 是一对多的关系。

def receiveCoordinatorMessage(msg: CoordinatorMessage): Unit = msg match {
    case HandOff(`shardId`) ⇒ handOff(sender())
    case HandOff(shard)     ⇒ log.warning("Shard [{}] can not hand off for another Shard [{}]", shardId, shard)
    case _                  ⇒ unhandled(msg)
  }

  def handOff(replyTo: ActorRef): Unit = handOffStopper match {
    case Some(_) ⇒ log.warning("HandOff shard [{}] received during existing handOff", shardId)
    case None ⇒
      log.debug("HandOff shard [{}]", shardId)

      if (state.entities.nonEmpty) {
        handOffStopper = Some(context.watch(context.actorOf(
          handOffStopperProps(shardId, replyTo, idByRef.keySet, handOffStopMessage))))

        //During hand off we only care about watching for termination of the hand off stopper
        context become {
          case Terminated(ref) ⇒ receiveTerminated(ref)
        }
      } else {
        replyTo ! ShardStopped(shardId)
        context stop self
      }
  }
def receiveTerminated(ref: ActorRef): Unit = {
if (handOffStopper.exists(_ == ref))
context stop self
else if (idByRef.contains(ref) && handOffStopper.isEmpty)
entityTerminated(ref)
}

 从这段代码看, shard actor 与 entity actor 的关系是一对一,因为当 entity stop self 了以后, shard actor 也会 stop self。这让我想到 coursera reactive programming 的最后一道作业题,为什么也是类似于 一个 entity 有一个 shard actor 对应。 

 

你可能感兴趣的:(akka cluster sharding source code 学习 (2/5) handle off)