Void TEncSearch::xTZSearch( TComDataCU* pcCU, TComPattern* pcPatternKey, Pel* piRefY, Int iRefStride, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB, TComMv& rcMv, UInt& ruiSAD ) {//!< 确定运动估计搜索范围的边界 Int iSrchRngHorLeft = pcMvSrchRngLT->getHor(); Int iSrchRngHorRight = pcMvSrchRngRB->getHor(); Int iSrchRngVerTop = pcMvSrchRngLT->getVer(); Int iSrchRngVerBottom = pcMvSrchRngRB->getVer(); //!< 以宏定义方式对TZSearch的相关参数进行设置 TZ_SEARCH_CONFIGURATION UInt uiSearchRange = m_iSearchRange; pcCU->clipMv( rcMv ); rcMv >>= 2; // init TZSearchStruct IntTZSearchStruct cStruct; cStruct.iYStride = iRefStride; cStruct.piRefY = piRefY; cStruct.uiBestSad = MAX_UINT; // set rcMv (Median predictor) as start point and as best point xTZSearchHelp( pcPatternKey, cStruct, rcMv.getHor(), rcMv.getVer(), 0, 0 );//!< 中值预测 // test whether one of PRED_A, PRED_B, PRED_C MV is better start point than Median predictor if ( bTestOtherPredictedMV ) { for ( UInt index = 0; index < 3; index++ ) { TComMv cMv = m_acMvPredictors[index]; pcCU->clipMv( cMv ); cMv >>= 2; xTZSearchHelp( pcPatternKey, cStruct, cMv.getHor(), cMv.getVer(), 0, 0 ); //!< A, B, C相邻PU的mv } } // test whether zero Mv is better start point than Median predictor if ( bTestZeroVector ) { xTZSearchHelp( pcPatternKey, cStruct, 0, 0, 0, 0 );//!< 零mv } // start search,从以前面几个mv作为搜索起点得到的最好的位置开始进行接下来的搜索 Int iDist = 0; Int iStartX = cStruct.iBestX; Int iStartY = cStruct.iBestY; // first search for ( iDist = 1; iDist <= (Int)uiSearchRange; iDist*=2 )//!< 以2的幂次逐步扩大搜索步长 { if ( bFirstSearchDiamond == 1 ) { xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist ); } else { xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist ); } if ( bFirstSearchStop && ( cStruct.uiBestRound >= uiFirstSearchRounds ) ) // stop criterion { break; } } // test whether zero Mv is a better start point than Median predictor if ( bTestZeroVectorStart && ((cStruct.iBestX != 0) || (cStruct.iBestY != 0)) ) { xTZSearchHelp( pcPatternKey, cStruct, 0, 0, 0, 0 ); if ( (cStruct.iBestX == 0) && (cStruct.iBestY == 0) ) { // test its neighborhood for ( iDist = 1; iDist <= (Int)uiSearchRange; iDist*=2 ) { xTZ8PointDiamondSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, 0, 0, iDist ); if ( bTestZeroVectorStop && (cStruct.uiBestRound > 0) ) // stop criterion { break; } } } } // calculate only 2 missing points instead 8 points if cStruct.uiBestDistance == 1 if ( cStruct.uiBestDistance == 1 )//!< 当最佳搜索步长等于1时,补充搜索前面8点钻石扫描遗漏的两点 { cStruct.uiBestDistance = 0; xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB ); } // raster search if distance is too big if ( bEnableRasterSearch && ( ((Int)(cStruct.uiBestDistance) > iRaster) || bAlwaysRasterSearch ) )//!< bEnableRasterSearch default is 1, iRaster default is 5 {//!< 当前面搜索得到的最佳步长过大时,改用光栅搜索法,步长定为iRaster,搜索范围为设定的运动估计范围 cStruct.uiBestDistance = iRaster; for ( iStartY = iSrchRngVerTop; iStartY <= iSrchRngVerBottom; iStartY += iRaster ) { for ( iStartX = iSrchRngHorLeft; iStartX <= iSrchRngHorRight; iStartX += iRaster ) { xTZSearchHelp( pcPatternKey, cStruct, iStartX, iStartY, 0, iRaster ); } } } // raster refinement if ( bRasterRefinementEnable && cStruct.uiBestDistance > 0 ) { while ( cStruct.uiBestDistance > 0 ) { iStartX = cStruct.iBestX; iStartY = cStruct.iBestY; if ( cStruct.uiBestDistance > 1 ) { iDist = cStruct.uiBestDistance >>= 1; if ( bRasterRefinementDiamond == 1 ) { xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist ); } else { xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist ); } } // calculate only 2 missing points instead 8 points if cStruct.uiBestDistance == 1 if ( cStruct.uiBestDistance == 1 ) { cStruct.uiBestDistance = 0; if ( cStruct.ucPointNr != 0 ) { xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB ); } } } } // start refinement if ( bStarRefinementEnable && cStruct.uiBestDistance > 0 ) { while ( cStruct.uiBestDistance > 0 ) {//!< 在经过了上面几个步骤的搜索后,从最佳点开始进行第2次的8点钻石扫描以及利用两点扫描对遗漏点进行补充 iStartX = cStruct.iBestX; iStartY = cStruct.iBestY; cStruct.uiBestDistance = 0; cStruct.ucPointNr = 0; for ( iDist = 1; iDist < (Int)uiSearchRange + 1; iDist*=2 ) { if ( bStarRefinementDiamond == 1 ) { xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist ); } else { xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist ); } if ( bStarRefinementStop && (cStruct.uiBestRound >= uiStarRefinementRounds) ) // stop criterion { break; } } // calculate only 2 missing points instead 8 points if cStrukt.uiBestDistance == 1 if ( cStruct.uiBestDistance == 1 ) { cStruct.uiBestDistance = 0; if ( cStruct.ucPointNr != 0 ) { xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB ); } } } } // write out best match,获得最佳匹配结果,mv和SAD rcMv.set( cStruct.iBestX, cStruct.iBestY ); ruiSAD = cStruct.uiBestSad - m_pcRdCost->getCost( cStruct.iBestX, cStruct.iBestY ); }
TZSearch的基本流程:
1、搜索预测得到的mv所指向的点:中值预测mv,当前PU的左,上及右上PU的mv,还有零运动矢量(0,0);
2、在步骤1中找到匹配误差最小的点作为接下来搜索的起始点;
3、步长从1开始,以2的指数递增,进行8点钻石搜索,该步骤中可以设置搜索的最大次数(以某个步长遍历一遍就算1次);
4、如果步骤3搜索得到的最佳步长为1,则需要以该最佳点为起点做1次两点钻石搜索,因为前面8点搜索的时候,这个最佳点的8个邻点会有两个没有搜索到;
5、如果步骤3搜索得到的最佳步长大于某个阈值(iRaster),则以步骤2得到的点作为起点,做步长为iRaster的光栅扫描(即在运动搜索的范围内遍历所有点);
6、 最后,在经过前面1~5歩之后,以得到的最佳点为起点,再次重复步骤3和4;
7、保存最佳mv和SAD。