【实习笔试面试题】2013网易互联网实习笔试算法题-找出最大连续自然数个数

找出最大连续自然数个数

搜集者:江南烟雨

E-Mail:[email protected]

本题为网易互联网暑期实习生笔试算法题。

凭记忆记录下来的题目,如违反网易版权请邮件联系,本人会删除。


以下参考答案为自己搜集网上资料以及同学讨论所得,如有错误,还请指出。欢迎来信交流!

题目:


 一个无序自然数数组,比如[100,2,1,3]求在0(n)时间复杂度内求出最大的连续自然数个数:输出应该是3

思路:


方法一:排序

可以采用一些排序方法比如基数排序、桶排序、记数排序等先进行排序。然后遍历一遍所有元素即可。当前这些排序有一些限制条件的。

方法二:维持一个hash表

维持一个hash表,大小为最大整数。遍历一次数组,用hash表记录出现在原始数组中的数。
然后设置四个个指示变量start,end,length,bestLength = 0。初始,start = end = 数组中第一个数,length = 1。然后不断执行下列操作:
end = end + 1.然后ziahash表中寻找end,如果能够找到,说明end存在原始数组中。一直到找不到end位置。
然后设置length = end - start。如果length大于bestLength,则更新:bestLength = length。
然后将start和end都设置为刚才为查找到的那个数,length = 1,接着重复上面的操作,最终的bestLength 便是最大的连续自然数个数。
由于hash的查找等操作都能在O(1)时间复杂度内完成,因此hash方法能够满足O(n)时间复杂度。

方法三:位图

用位图。类似方法二。
位图大小和最大的整数有关。位图中每一位为0或者1。位图某个位置index上为1表示index出现在原始数组中,反之不存在。遍历一遍原始数组建立位图之后,采用类似方法二中遍历hash表的方法遍历位图,找出最大的连续自然数个数。

位图的方法存在一个问题就是:可能最大的数很大,但是数的数目有很小,这时候要申请的位图的空间依然是很大,时候复杂度不是O(n)。


方法四:维持两个hash表


维持两个hash表tables:
Start表,其中的条目都是如下格式(start-point,length),包含的某个连续序列起始数以及序列长度。
End表,其中的条目都是如下格式(end-point,length),包含的某个连续序列结束数以及序列长度。

扫描原始数组,做如下操作:
对于当前值value,
判断value + 1是否存在于start表中。
如果存在,删除相应的条目,创建一个新条目(value,length + 1),同时更新end表相应条目,结束数不变,该对应长度加一。
判断value - 1是否存在于end表中。
如果存在,删除相应的条目,创建一个新条目(value,length + 1),同时更新start表相应条目,开始数不表,该对应长度加一。
如果在两个表中都存在,则合并两个已经存在的连续序列为一个。将四个条目删除,新建两个条目,每两个条目代表一个连续序列。
如果都不存在,则只需要在两个表中创建一个新的长度为1的条目。

一直这样等到数组中所有元素处理完毕,然后扫描start表寻找length值最大的那个即可。

这里要达到O(n)时间复杂度,start表和end表都用hash表实现,而且必须满足相关操作查找/添加/删除能够在O(1)时间复杂度内完成。

实例分析:
int[] input = {10,21,45,22,7,2,67,19,13,45,12, 11,18,16,17,100,201,20,101};

初始化状态:
Start table:{}
End table:{}
开始遍历数组:
10:两个数组中都不存在,添加条目。
Start table:{(10,1)}
End table:{(10,1)}
21:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,1)}
End table:{(10,1),(21,1)}
45:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,1),(45,1)}
End table:{(10,1),(21,1),(45,1)}
22:22-1=21存在于end表中需要进行更新。
Start table:{(10,1),(21,2),(45,1)}
End table:{(10,1),(22,2),(45,1)}
7:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,2),(45,1),(7,1)}
End table:{(10,1),(22,2),(45,1),(7,1)}
2:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,2),(45,1),(7,1),(2,1)}
End table:{(10,1),(22,2),(45,1),(7,1),(2,1)}
67:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,2),(45,1),(7,1),(2,1),(67,1)}
End table:{(10,1),(22,2),(45,1),(7,1),(2,1),(67,1)}
19:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,2),(45,1),(7,1),(2,1),(67,1),(19,1)}
End table:{(10,1),(22,2),(45,1),(7,1),(2,1),(67,1),(19,1)}
13:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,2),(45,1),(7,1),(2,1),(67,1),(19,1),(13,1)}
End table:{(10,1),(22,2),(45,1),(7,1),(2,1),(67,1),(19,1),(13,1)}
45:两个数组中都不存在,添加条目。
Start table:{(10,1),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,1),(13,1)}
End table:{(10,1),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,1),(13,1)}
12:12+1=13存在start表中,更新。
Start table:{(10,1),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,1),(12,2)}
End table:{(10,1),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,1),(13,2)}
11:11+1=12都存在,合并。
Start table:{(10,4),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,1)}
End table:{(13,4),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,1)}
18:18+1=19存在start表中,更新。
Start table:{(10,4),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(18,2)}
End table:{(13,4),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,2)}
16:都不存在,添加条目。
Start table:{(10,4),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(18,2),(16,1)}
End table:{(13,4),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,2),(16,1)}
17:都存在,合并。
Start table:{(10,4),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(16,4)}
End table:{(13,4),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,4)}
100:都不存在,添加条目。
Start table:{(10,4),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(16,4),(100,1)}
End table:{(13,4),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,4),(100,1)}
201:都不存在,添加条目。
Start table:{(10,4),(21,2),(45,1),(45,1),(7,1),(2,1),(67,1),(16,4),(100,1),(201,1)}
End table:{(13,4),(22,2),(45,1),(45,1),(7,1),(2,1),(67,1),(19,4),(100,1),(201,1)}
20:都存在,合并。
Start table:{(10,4),(16,7),(45,1),(45,1),(7,1),(2,1),(67,1),(100,1),(201,1)}
End table:{(13,4),(22,7),(45,1),(45,1),(7,1),(2,1),(67,1),(100,1),(201,1)}
101:都存在,合并。
Start table:{(10,4),(16,7),(45,1),(45,1),(7,1),(2,1),(67,1),(100,1),(201,1),(101,1)}
End table:{(13,4),(22,7),(45,1),(45,1),(7,1),(2,1),(67,1),(100,1),(201,1),(201,1)}

最后搜索start表,找到length值最大的,为7.连续自然数序列是:(16,17,18,19,20,21,22).
结束。

参考资料:
Longest Consecutive Sequence in an Unsorted Array

你可能感兴趣的:(编程,算法)