转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
题意 :给出n条边,问选出三条边能组成三角形的概率
http://acm.hdu.edu.cn/showproblem.php?pid=4609
第一次搞FFT,理论还不是非常清楚,首先要了解卷积。
我只是来存代码的,具体的可以看kuangbin巨巨的解释
http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html
num[i]表示长度为i的边有几条,求一次num与num的卷积之后,num[i]表示两条边和为i的有多少对。
然后 需要去重一下,最后就可以 O(n)统计了,去重的地方需要注意,blog里有讲很详细
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; //FFT copy from kuangbin const double pi = acos (-1.0); // Complex z = a + b * i struct Complex { double a, b; Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){} Complex operator + (const Complex &c) const { return Complex(a + c.a , b + c.b); } Complex operator - (const Complex &c) const { return Complex(a - c.a , b - c.b); } Complex operator * (const Complex &c) const { return Complex(a * c.a - b * c.b , a * c.b + b * c.a); } }; //len = 2 ^ k void change (Complex y[] , int len) { for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) { if (i < j) swap(y[i] , y[j]); int k = len / 2; while (j >= k) { j -= k; k /= 2; } if(j < k) j += k; } } // FFT // len = 2 ^ k // on = 1 DFT on = -1 IDFT void FFT (Complex y[], int len , int on) { change (y , len); for (int h = 2 ; h <= len ; h <<= 1) { Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h)); for (int j = 0 ; j < len ; j += h) { Complex w(1 , 0); for (int k = j ; k < j + h / 2 ; k ++) { Complex u = y[k]; Complex t = w * y [k + h / 2]; y[k] = u + t; y[k + h / 2] = u - t; w = w * wn; } } } if (on == -1) { for (int i = 0 ; i < len ; i ++) { y[i].a /= len; } } } const int N = 100005; typedef long long LL; int n , a[N]; LL sum[N << 2] , num[N << 2]; Complex x1[N << 2]; int main () { #ifndef ONLINE_JUDGE freopen("input.txt" , "r" , stdin); #endif int t; scanf ("%d", &t); while (t --) { memset (num , 0 , sizeof(num)); scanf ("%d", &n); for (int i = 0 ; i < n ; i ++) { scanf ("%d", &a[i]); num[a[i]] ++; } sort (a , a + n); int len = a[n - 1] + 1; int l = 1; while (l < len * 2) l <<= 1; for (int i = 0 ; i < len ; i ++) { x1[i] = Complex (num[i] , 0); } for (int i = len ; i < l ; i ++) { x1[i] = Complex (0 , 0); } FFT(x1 , l , 1); for (int i = 0 ; i < l ; i ++) { x1[i] = x1[i] * x1[i]; } FFT(x1 , l , -1); for (int i = 0 ; i < l ; i ++) { num[i] = (LL)(x1[i].a + 0.5); } l = 2 * a[n - 1]; for (int i = 0 ; i < n ; i ++) { num[a[i] << 1] --; } for (int i = 1 ; i <= l ; i ++) { num[i] /= 2; } sum[0] = 0; for (int i = 1 ; i <= l ; i ++) { sum[i] = sum[i - 1] + num[i]; } double ans = 0; for (int i = 0 ; i < n ; i ++) { ans += sum[l] - sum[a[i]]; ans -= n - 1; ans -= (double)i * (n - 1 - i); ans -= (double)(n - i - 1) * (n - i - 2) / 2; } printf ("%.7f\n", ans * 6.0 / n / (n - 1.0) / (n - 2.0)); } return 0; }