CBLAS的安装与使用
ysm
CBLAS是BLAS的C语言接口。BLAS的全称是Basic Linear Algebra Subprograms,中文大概可以叫做基础线性代数子程序。主要是用于向量和矩阵计算的高性能数学库。本身BLAS是用Fortran写的,为了方便C/C++程序的使用,就有了BLAS的C接口库CBLAS。BLAS的主页是http://www.netlib.org/blas/,CBLAS的下载地址也可以在这个页面上找到。
CBLAS安装需要先装BLAS,从主页上下载blas.tgz,解压,根据系统修改make.inc和Makefile,make,就会生成一个blas_LINUX.a文件。然后,下载cblas.tgz,解压,在目录下将Makefile.*文件改名或者做一个链接文件为Makefile.in文件,比如在linux下就是ln -s Makefile.LINUX Makefile.in,根据具体情况修改Makefile.in文件,主要是BLAS的库文件路径BLLIB和CBLAS的安装目录CBDIR,make help就可以打印出可以使用的make命令,要生成全部文件就是用make all。在$(CBDIR)目录下的$(CBLIBDIR)将生成CBLAS的库文件$(CBLIB),cblas_LINUX.a。
在CBLAS的安装目录$(CBDIR)下的src目录中有个cblas.h是包括的CBLAS的函数和常量的头文件,使用CBLAS的时候就需要这个头文件,同时还需要BLAS的库文件$(BLLIB )和CBLAS的库文件$(CBLIB)。
CBLAS/BLAS分为3个level,level1是用于向量的计算,level2是用于向量和矩阵之间的计算,level3是矩阵之间的计算。比如计算矩阵的乘法就是属于level3,这里就用矩阵乘法来学习使用CBLAS。
计算矩阵乘法的函数之一是 cblas_sgemm,使用单精度实数,另外还有对应双精度实数,单精度复数和双精度复数的函数。在此以 cblas_sgemm为例。
函数定义为:
void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc)
关于此函数的详细定义可以在http://www.netlib.org/blas/sgemm.f找到,只不过是fortran语言的,这个C语言版的略有差别。
此函数计算的是 C = alpha*op( A )*op( B ) + beta*C,
const enum CBLAS_ORDER Order,这是指的数据的存储形式,在CBLAS的函数中无论一维还是二维数据都是用一维数组存储,这就要涉及是行主序还是列主序,在C语言中数组是用行主序,fortran中是列主序。我还是习惯于是用行主序,所以这个参数是用CblasRowMajor,如果是列主序的话就是CblasColMajor。
const enum CBLAS_TRANSPOSE TransA和const enum CBLAS_TRANSPOSE TransB,这两个参数影响的是op( A )和op( B),可选参数为CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113,其中TransA = CblasNoTrans, op( A ) = A,TransA = CblasTrans, op( A ) = A',TransA = CblasConjTrans, op( A ) = A'。 TransB类似。
const int M,矩阵A的行,矩阵C的行
const int N,矩阵B的列,矩阵C的列
const int K,矩阵A的列,矩阵B的行
const float alpha, const float beta,计算公式中的两个参数值,如果只是计算C=A*B,则alpha=1,beta=0
const float *A, const float *B, const float *C,矩阵ABC的数据
const int lda, const int ldb, const int ldc,在BLAS的文档里,这三个参数分别为ABC的行数,但是实际使用发现,在CBLAS里应该是列数。
我在这里计算两个简单矩阵的乘法。
A:
1,2,3
4,5,6
7,8,9
8,7,6
B:
5,4
3,2
1,0
程序代码:
//因为程序是C++,而CBLAS是C语言写的,所以在此处用extern关键字 extern"C" { #include<cblas.h> } #include<iostream> usingnamespace std; int main(void) { constenum CBLAS_ORDER Order=CblasRowMajor; constenum CBLAS_TRANSPOSE TransA=CblasNoTrans; constenum CBLAS_TRANSPOSE TransB=CblasNoTrans; constint M=4; //A的行数,C的行数 constint N=2; //B的列数,C的列数 constint K=3; //A的列数,B的行数 constfloat alpha=1; constfloat beta=0; constint lda=K; //A的列 constint ldb=N; //B的列 constint ldc=N; //C的列 constfloat A[K*M]={1,2,3,4,5,6,7,8,9,8,7,6}; constfloat B[K*N]={5,4,3,2,1,0}; float C[M*N]; cblas_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); for(int i=0;i<M;i++) { for(int j=0;j<N;j++) { cout<<C[i*N+j]<<"\t"; } cout<<endl; } return EXIT_SUCCESS; }
在编译的时候需要带上cblas_LINUX.a和blas_LINUX.a,比如,
g++ main.cpp cblas_LINUX.a blas_LINUX.a -o main
当然,这里假定是这两个.a文件是放在可以直接访问的位置,或者写全路径也可以。
这种做法在CentOS.5下顺利通过,但是在我的Ubuntu.7.10下出了问题,blas_LINUX.a正常编译生成,但在链接的时候出了错误,所以只好从源里安装了atlas,sudo apt-get install atlas3-base,在/usr/lib/atlas/目录下就会有libblas.*和liblapack.*库文件,只需要在链接的时候用这里的blas库文件替换上文安装的BLAS就可以正常编译通过。
另外,在GSL下也有BLAS和CBLAS,在boost里有ublas也提供CBLAS/BLAS的功能,有时间也拿来研究研究。