http://acm.pku.edu.cn/JudgeOnline/problem?id=2263
Heavy Cargo
Time Limit: 1000MS |
|
Memory Limit: 65536K |
Total Submissions: 1296 |
|
Accepted: 754 |
Description
Big Johnsson Trucks Inc. is a company specialized in manufacturing big trucks. Their latest model, the Godzilla V12, is so big that the amount of cargo you can transport with it is never limited by the truck itself. It is only limited by the weight restrictions that apply for the roads along the path you want to drive.
Given start and destination city, your job is to determine the maximum load of the Godzilla V12 so that there still exists a path between the two specified cities.
Input
The input will contain one or more test cases. The first line of each test case will contain two integers: the number of cities n (2<=n<=200) and the number of road segments r (1<=r<=19900) making up the street network.
Then r lines will follow, each one describing one road segment by naming the two cities connected by the segment and giving the weight limit for trucks that use this segment. Names are not longer than 30 characters and do not contain white-space characters. Weight limits are integers in the range 0 - 10000. Roads can always be travelled in both directions.
The last line of the test case contains two city names: start and destination.
Input will be terminated by two values of 0 for n and r.
Output
For each test case, print three lines:
- a line saying "Scenario #x" where x is the number of the test case
- a line saying "y tons" where y is the maximum possible load
- a blank line
Sample Input
4 3
Karlsruhe Stuttgart 100
Stuttgart Ulm 80
Ulm Muenchen 120
Karlsruhe Muenchen
5 5
Karlsruhe Stuttgart 100
Stuttgart Ulm 80
Ulm Muenchen 120
Karlsruhe Hamburg 220
Hamburg Muenchen 170
Muenchen Karlsruhe
0 0
Sample Output
Scenario #1
80 tons
Scenario #2
170 tons
Source
Ulm Local 1998
题意:给出各路径的限制载重,求从A求到B地的货车最大承载的货物
以下为四种解法,按效率由小到大~
1、分析:采用广搜加剪枝,用map[][]表示所给出的图,用mark[][]标记达到某点时所能承重的最高值,记录,每加入一个新结点之前,判断是否可以剪去~
/*poj 2263 462MS dooder 剪枝广搜实现*/ #include<stdio.h> #include<string.h> #include<queue> using namespace std; #define M 201 typedef struct { int city; int min; }Way; char city[M][31]; int k; int map[M][M]; int mark[M][M]; queue<Way> que; int f,t,n,m,ans; int min(int a,int b) { return a<b?a:b; } void bfs() { Way cur,next; int i; while(!que.empty()){ cur=que.front(); que.pop(); if(cur.city==t){ if(cur.min>ans) ans=cur.min; } for(i=0;i<n;i++){ if(map[cur.city][i]&&(!mark[cur.city][i]||mark[cur.city][i]<cur.min)){ mark[cur.city][i]=mark[i][cur.city]=cur.min; next.city=i; next.min=min(cur.min,map[cur.city][i]); que.push(next); } } } } void run() { int i; Way cur; memset(mark,0,sizeof(mark)); ans=0; for(i=0;i<n;i++){ if(map[f][i]&&(!mark[f][i]||mark[f][i]<map[f][i])){ cur.city=i; cur.min=map[f][i]; que.push(cur); bfs(); } } } int main() { int k1,k2,tons,c=1; char s1[31],s2[31]; while(scanf("%d%d",&n,&m),n||m){ k=0; memset(mark,0,sizeof(mark)); while(m--){ scanf("%s%s%d",s1,s2,&tons); for(k1=0;strcmp(s1,city[k1])&&k1<k;k1++); if(k1==k) strcpy(city[k++],s1); for(k2=0;strcmp(s2,city[k2])&&k2<k;k2++); if(k2==k) strcpy(city[k++],s2); map[k1][k2]=map[k2][k1]=tons; } scanf("%s%s",s1,s2); for(f=0;strcmp(s1,city[f]);f++); for(t=0;strcmp(s2,city[t]);t++); run(); printf("Scenario #%d/n",c++); printf("%d tons/n/n",ans); } return 0; }
2、分析:采用经典算法floyd实现,采用邻接矩阵表示结果,可以求出从出发点到达任何点能承载的最高货物重量;
floyd补充:
Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
核心思路:
从图的带权 邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}
map[i,j]表示i到j的最短距离
K是穷举
i,j的断点
map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路
实现过程:把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。 定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。 把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。 在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。 比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。
时间复杂度:O(n^3)
优缺点:
Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次 Dijkstra算法。 优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单; 缺点:时间复杂度比较高,不适合计算大量数据。
以下是此题floyd算法实现代码:
/*POJ 2263 16MS dooder floyd算法实现*/ #include<stdio.h> #include<string.h> #define M 201 char city[M][35]; int k; int map[M][M]; int mark[M][M]; int max(int a,int b) { return a>b?a:b; } int min(int a,int b) { return a<b?a:b; } int main() { int n,m,k1,k2,tons,f,t,r,c=1; char s1[35],s2[35]; while(scanf("%d%d",&n,&m),n||m){ k=0; memset(mark,0,sizeof(mark)); while(m--){ scanf("%s%s%d",s1,s2,&tons); for(k1=0;strcmp(s1,city[k1])&&k1<k;k1++); if(k1==k) strcpy(city[k++],s1); for(k2=0;strcmp(s2,city[k2])&&k2<k;k2++); if(k2==k) strcpy(city[k++],s2); map[k1][k2]=map[k2][k1]=tons; } scanf("%s%s",s1,s2); /*floyd实现过程*/ for(r=0;r<n;r++){ for(f=0;f<n;f++){ if(map[f][r]){ for(t=0;t<n;t++){ if(map[r][t]){ map[f][t]=max(map[f][t],min(map[f][r],map[r][t])); } } } } } for(f=0;strcmp(s1,city[f]);f++); for(t=0;strcmp(s2,city[t]);t++); printf("Scenario #%d/n",c++); printf("%d tons/n/n",map[f][t]); } return 0; }
3、分析:采用优先队列,每次取出当前队列中结点的minheavy最大值出队,对它的连接结点搜索入队,这样,从出发点开始就可以
在到达终点时求出结果,即最大载货物重~
/*POJ 2263 16ms dooder 优先队列搜索实现*/ #include<stdio.h> #include<string.h> #include<queue> using namespace std; #define M 201 typedef struct w{ int city; int mintons; bool operator < (const w &a)const { return mintons < a.mintons; }//优先性定义 }Way; char citys[M][31]; int map[M][M]; bool mark[M][M]; int n,m,from,to,ans,k; priority_queue <Way> que; int min(int a,int b) { return a>b?b:a; } void bfs() { Way cur,next; int i; while(!que.empty()){ cur=que.top(); que.pop(); if(cur.city==to){ if(cur.mintons>ans) ans=cur.mintons; while(!que.empty()) que.pop(); return ; } for(i=0;i<n;i++){ if(map[cur.city][i]&&!mark[cur.city][i]){ next.city=i; next.mintons=min(cur.mintons,map[cur.city][i]); mark[cur.city][i]=mark[i][cur.city]=1; que.push(next); } } } } void run() { int i,temp,index; Way cur; ans=0; memset(mark,0,sizeof(mark)); temp=0; for(i=0;i<n;i++){ if(map[from][i]>temp){ temp=map[from][i]; index=i; } } cur.city=index; cur.mintons=temp; que.push(cur); bfs(); } int main() { int k1,k2,tons,t=1; char s1[31],s2[31]; while(scanf("%d%d",&n,&m),n||m){ k=0; while(m--){ scanf("%s%s%d",s1,s2,&tons); for(k1=0;strcmp(s1,citys[k1])&&k1<k;k1++); if(k1==k) strcpy(citys[k++],s1); for(k2=0;strcmp(s2,citys[k2])&&k2<k;k2++); if(k2==k) strcpy(citys[k++],s2); map[k1][k2]=map[k2][k1]=tons; } scanf("%s%s",s1,s2); for(from=0;strcmp(citys[from],s1);from++); for(to=0;strcmp(citys[to],s2);to++); run(); printf("Scenario #%d/n",t++); printf("%d tons/n/n",ans); } return 0; }
4、分析:类似最小生成树,用并查集实现,对所有的路径进行降序排序,然后按顺序向树中插入边,直到一条边的插入连通了出发地和目的地,返回,这条边的权值即为所求结果~
/*POJ 2263 16ms dooder 并查集实现*/ #include<stdio.h> #include<string.h> #include<stdlib.h> #define M 19905 typedef struct w{ int v,f,t; }Way; Way ways[M]; char citys[201][31]; int parent[201]; int ans,from,to,n,r,k,l; int cmp(const void *a,const void *b) { return *(int *)b-*(int *)a; } int root(int r) { if(r!=parent[r]) parent[r]=root(parent[r]); return parent[r]; } void merge(int x,int y) { x=root(x); y=root(y); if(x<y) parent[y]=x; else parent[x]=y; } void run() { int i; for(i=0;i<n;i++) parent[i]=i; qsort(ways,l,sizeof(ways[0]),cmp); for(i=0;i<l;i++){ merge(ways[i].f,ways[i].t); if(root(from)==root(to)){//实现连通 ans=ways[i].v; break; } } } int main() { int k1,k2,tons,t=1; char s1[31],s2[31]; while(scanf("%d%d",&n,&r),n||r){ k=l=0; while(r--){ scanf("%s%s%d",s1,s2,&tons); for(k1=0;strcmp(s1,citys[k1])&&k1<k;k1++); if(k1==k) strcpy(citys[k++],s1); for(k2=0;strcmp(s2,citys[k2])&&k2<k;k2++); if(k2==k) strcpy(citys[k++],s2); ways[l].f=k1;ways[l].t=k2;ways[l++].v=tons; } scanf("%s%s",s1,s2); for(from=0;strcmp(citys[from],s1);from++); for(to=0;strcmp(citys[to],s2);to++); run(); printf("Scenario #%d/n",t++); printf("%d tons/n/n",ans); } return 0; }