题目:http://poj.org/problem?id=1743
题意:给你一个序列,求序列里长度至少为5的最长不重叠重复子串,这里的重复包括每个元素加减相同的值
分析:对于区间加减可以通过将相邻的元素的差组成新的序列,答案就变成求至少长度4的最长不重叠重复子串,并且至少间隔1的距离,然后就可以用后缀数组来做了,然后二分子串的长度L,找到height数组大于等于这个长度L的区间,求区间对应原序列的下标的最大值high和最小值low,只要high-low>L就表示存在长度为L的解。。。
PS:这题居然是楼教主的男人八题之一。。。当初就应该把他们都A了= =
代码:
/** head files*/ #include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> using namespace std; /** some operate*/ #define PB push_back #define MP make_pair #define REP(i,n) for(i=0;i<(n);++i) #define UPTO(i,l,h) for(i=(l);i<=(h);++i) #define DOWN(i,h,l) for(i=(h);i>=(l);--i) #define MSET(arr,val) memset(arr,val,sizeof(arr)) #define MAX3(a,b,c) max(a,max(b,c)) #define MAX4(a,b,c,d) max(max(a,b),max(c,d)) #define MIN3(a,b,c) min(a,min(b,c)) #define MIN4(a,b,c,d) min(min(a,b),min(c,d)) /** some const*/ #define N 22222 #define M 222222 #define PI acos(-1.0) #define oo 1111111111 /** some alias*/ typedef long long ll; /** Global variables*/ /** some template names, just push ctrl+j to get it in*/ //manacher 求最长回文子串 //pqueue 优先队列 //combk n元素序列的第m小的组合和 //pmatrix n个点的最大子矩阵 //suffixarray 后缀数组 template <typename T, int LEN> struct suffixarray { int str[LEN*3],sa[LEN*3]; int rank[LEN],height[LEN]; int id[LEN]; int len; bool equal(int *str, int a, int b) { return str[a]==str[b]&&str[a+1]==str[b+1]&&str[a+2]==str[b+2]; } bool cmp3(int *str, int *nstr, int a, int b) { if(str[a]!=str[b])return str[a]<str[b]; if(str[a+1]!=str[b+1])return str[a+1]<str[b+1]; return nstr[a+b%3]<nstr[b+b%3]; } void radixsort(int *str, int *sa, int *res, int n, int m) { int i; REP(i,m)id[i]=0; REP(i,n)++id[str[sa[i]]]; REP(i,m)id[i+1]+=id[i]; DOWN(i,n-1,0)res[--id[str[sa[i]]]]=sa[i]; } void dc3(int *str, int *sa, int n, int m) { #define F(x) ((x)/3+((x)%3==1?0:one)) #define G(x) ((x)<one?(x)*3+1:((x)-one)*3+2) int *nstr=str+n, *nsa=sa+n, *tmpa=rank, *tmpb=height; int i,j,k,len=0,num=0,zero=0,one=(n+1)/3; REP(i,n)if(i%3)tmpa[len++]=i; str[n]=str[n+1]=0; radixsort(str+2, tmpa, tmpb, len, m); radixsort(str+1, tmpb, tmpa, len, m); radixsort(str+0, tmpa, tmpb, len, m); nstr[F(tmpb[0])]=num++; UPTO(i,1,len-1) nstr[F(tmpb[i])]=equal(str,tmpb[i-1],tmpb[i])?num-1:num++; if(num<len)dc3(nstr,nsa,len,num); else REP(i,len)nsa[nstr[i]]=i; if(n%3==1)tmpa[zero++]=n-1; REP(i,len)if(nsa[i]<one)tmpa[zero++]=nsa[i]*3; radixsort(str, tmpa, tmpb, zero, m); REP(i,len)tmpa[nsa[i]=G(nsa[i])]=i; i=j=0; REP(k,n) if(j>=len||(i<zero&&cmp3(str,tmpa,tmpb[i],nsa[j])))sa[k]=tmpb[i++]; else sa[k]=nsa[j++]; } void initSA(T *s, int n,int m) { int i,j,k=0; str[len=n]=0; REP(i,n)str[i]=s[i]; dc3(str,sa,n+1,m); REP(i,n)sa[i]=sa[i+1]; REP(i,n)rank[sa[i]]=i; REP(i,n) { if(k)--k; if(rank[i])for(j=sa[rank[i]-1];str[i+k]==str[j+k];++k); else k=0; height[rank[i]]=k; } } }; suffixarray<int,N> msa; int s[N]; bool ok(int m) { int i=0,j,low,high; while(i<msa.len) { while(i<msa.len&&msa.height[i]<m)++i; j=i; low=msa.len,high=-1; low=min(low,msa.sa[i-1]); high=max(high,msa.sa[i-1]); while(j<msa.len&&msa.height[j]>=m) { low=min(low,msa.sa[j]); high=max(high,msa.sa[j]); ++j; } if(high-low>m)return 1; i=j; } return 0; } int main() { int i,n,ans; while(scanf("%d",&n),n!=0) { REP(i,n)scanf("%d",&s[i]); REP(i,n)s[i]=200+s[i]-s[i+1]; msa.initSA(s,n-1,555); int l=4,r=n,m; ans=0; while(l<=r) { m=(l+r)>>1; if(ok(m))ans=l=m+1; else r=m-1; } printf("%d\n",ans); } return 0; }